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Abstract

Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the
following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering
induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that
the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits
apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification
of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the
nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON-
and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction
of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and
auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA
level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with
Ca?*-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone
analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin
transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed.

Key words: Abscisic acid, alternate bearing, auxin, bud, citrus, flowering, fruit load.

Introduction

Fruit trees exhibit two major multiannual reproductive strat-
egies (Goldschmidt, 2013). In the first, the amount of fruit
produced allows a sufficient amount of vegetative growth to
support production of an ample number of flowers during the
following year (return bloom). Such trees, including fig and
some orange and grapefruit cultivars, are defined as regular
bearers. They are characterized by a relatively stable multian-
nual yield, and usually possess efficient mechanism(s) to con-
trol excess fruit production. A second strategy is also used by
trees that bear a heavy fruit load (ON-Crop) in one year, which

inhibits return bloom and vegetative growth the next year
(Monselise and Goldschmidt, 1982). Thus, the second year
is characterized by low yield (OFF-Crop) and high vegeta-
tive growth. Such trees, including olive, pistachio, mandarins,
and many others, are defined as alternate or biannual bearers
and they are usually characterized by low self-thinning abil-
ity (Goldschmidt, 2013). Alternate bearer cultivars present a
serious economic problem to fruit growers. Therefore, chemi-
cal or manual fruit thinning are common practices in their
cultivation (Dennis, 2000). In citrus culture, low temperatures
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during the autumn and winter are a major factor in inducing
flowering (Valiente and Albrigo, 2004; Knauer et al., 2011).
Optimal flowering density is achieved only upon accretion
of sufficient cool hours. It is assumed that a heavy fruit load
prevents recognition of the low-temperature flowering induc-
tive signal and/or blocks later stages of inflorescence, such as
bud break (Albrigo and Galan-Sauco, 2004; Verreynne and
Lovatt, 2009). As expected, fruit load affects the expression
of flowering control genes, FT, LFY, API1, TFL, and miR156-
regulated SQUAMOSA PROMOTER BINDING (SPLY5) in
leaves and buds of citrus (Mufoz-Fambuena et al., 2011,
2012b; Shalom et al., 2012) as well as in mango and apple
(Kotoda et al., 2010; Nakagawa et al., 2012).

The mechanism by which heavy crop load affects return
bloom is not fully understood. The developing fruit provides
a strong sink for photoassimilates. It was therefore thought
that depletion of photoassimilates, especially carbohydrates
from the bud, prevents flowering induction, a hypothesis
known as the nutritional theory (Goldschmidt et al., 1985;
Goldschmidt, 1999). Sucrose was shown to play a regulatory
role in Arabidopsis flowering control (Eriksson et al., 2006),
but whether sugars indeed play a regulatory role in flower-
ing induction under various fruit loads in fruit trees has been
a controversial issue for many years (Hilgeman et al., 1967;
Jones et al., 1970, 1974; Goldschmidt and Golomb, 1982; Li
etal.,2003a, b). Recent work has shown that trehalose metab-
olism and its product trehalose-6-phosphate were involved
in flowering control in Arabidopsis (van Dijken et al., 2004;
Wahl et al., 2013). It was also shown that two genes encoding
enzymes associated with trehalose metabolism were induced
in OFF-Crop buds (Shalom et al., 2012). In addition to the
nutritional control of alternate bearing (AB), it might well
be that the fruit itself, or an organ which senses fruit pres-
ence, generates an inhibitory signal (AB signal) which moves
into the bud and prevents flowering induction (Bower et al.,
1990; Talon et al., 1997). Fruit thinning or complete removal
(de-fruiting) from ON-Crop trees induces return bloom
(Monselise and Goldschmidt, 1981), thus providing support
for this notion. Gibberellin (GA) is known to inhibit flow-
ering in many perennials (Goldschmidt and Samach, 2004;
Bangerth, 2009). However, while exogenous application of
GA prevents flowering (Goldschmidt et al., 1997; Mufioz-
Fambuena et al., 2012a; Goldberg-Moeller et al., 2013), the
question of whether GA acts endogenously to inhibit flower-
ing is still open. The involvement of abscisic acid (ABA) in
the regulation of return bloom is even less clear (Jones et al.,
1976; Goldschmidt, 1984; Koshita et al., 1999; Okuda, 2000).
Polar auxin transport from a dominant sink was also sug-
gested as a possible mobile signal affecting flowering (Caaejas
and Bangerth, 1997; Smith and Samach, 2013).

Fruit load might act at various developmental stages such
as flowering induction, transition of the shoot apical meris-
tem, and subsequent stages of flower development and bud
break (Verreynne and Lovatt, 2009). Regardless of the source
of the AB signal and its nature, it must be recognized by its
receptor in the bud which in turn must make the ‘decision’
of whether to proceed to inflorescence or not. In order to
investigate metabolic and regulatory processes taking place

in the bud and affected by fruit load, the transcriptome of
buds from ON- and OFF-Crop trees was recently compared
during three developmental stages. Changes in metabolic and
regulatory pathways, including photosynthesis, and in flavo-
noid and trehalose metabolism were identified (Shalom et al.,
2012). However, this work was biased due to the use of an
Affymetrix Citrus Gene-Chip array that contained ~15 500
genes. In fact, with the exception of trehalose metabolism,
no other regulatory pathways were identified. In the current
work, a complementary approach was taken by comparing
the transcriptome of buds of de-fruited trees with those of
ON-Crop trees. The genomic analysis was non-biased, as it
was based on RNA-deep sequencing. It was possible to iden-
tify an increase in ABA-metabolizing genes, accompanied by
a decrease in ABA levels and those of its catabolites in buds
of de-fruited trees. Moreover, a remarkable increase in the
expression of genes encoding proteins associated with cal-
cium-dependent auxin polar transport and a reduction in bud
endogenous auxin levels following de-fruiting were identified.
The results are discussed in light of the previously suggested
auxin transport autoinhibition (ATA) theory (Bangerth,
1989) and its role in AB (Smith and Samach, 2013).

Materials and methods

Plant material and sample collection

Plant material was collected from a commercial orchard of 15-year-
old Murcott mandarin (Citrus reticulate Blanco) trees grafted on
sour orange (Citrus aurantium L.), located in the central coastal area
of Israel, during the years 2011 (an ON year) and 2012 (an OFF
year). Although most of the trees in the orchard bore similar yields
in a given year, some were aberrant and showed an opposite AB
trend. These and nearby trees with the opposite yield status were
selected. Overall, nine triplets of trees were chosen, with each triplet
(two ON trees and a nearby OFF tree) being considered one bio-
logical replicate. Fruits were completely removed (de-fruiting) on 22
August 2011 from one of the ON trees in each triplet, and this tree
was labelled DEF. Samples were collected 1 d prior to de-fruiting
(Time 0, from ON and OFF trees), 1 week following de-fruiting
(Time 1, from ON and DEF trees), 2 weeks following de-fruiting
(Time 2, from ON and DEF trees), and 4 weeks following de-fruit-
ing (Time 4, from ON, OFF, and DEF trees).

The three most extreme conditions of spring flush flowering were
compared (see fig. S2 in Shalom et al., 2012): fruit-bearing flush of
an ON tree, fruitless flush of an OFF tree, and de-fruited flush of
a DEF tree. Branches of each of these conditions were collected
from the southeast side of the trees, taken to the laboratory on ice,
and buds were separated and immediately frozen in liquid nitrogen.
The percentages of generative, mixed, and vegetative shoots were
determined for all branches splitting off from one major 50-60 mm
diameter branch located on the southeast side of the tree, during
peak blossoming time (usually the first 10 d of April of the consecu-
tive year). Selection of the branches to be sampled was done prior
to bud break.

RNA extraction, quantification, and gPCR analyses

Total RNA was extracted, treated, and analysed from ~0.2 g of fro-
zen bud tissue, and cDNA was synthesized, as previously described
(Shalom et al., 2012). Primers for the genes CiFT2, CsLFY, SPLS,
RbcS, LHCB3, PRK, PSB28, PSAD, SHM, Fd, NCED3, CAX,
PBPI-likel, PBPI-like2, NPH3, CA-binding EF handl, B-ACTIN,
and a dual-labelled probe for CiFT2 were designed based on genomic
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and expressed sequence tag (EST) sequences (Phytozome, http://www.
phytozome.net/; HarvEST, http://harvest.ucr.edu/) using Primer 3
software (Supplementary Table S1 available at JXB online). Real-
time PCR was carried out as described (Shalom et al., 2012). For the
CiFT2 dual-labelled probe reaction, real-time PCR was carried out
as described by Shalom ez al. (2012). The mRNA levels of trehalose
biosynthetic genes and flavonoid biosynthetic genes (Supplementary
Table S2) were determined by nCounter analysis (Nanostring
Technologies, Seattle, WA, USA) at the VIB MicroArrays Facility
(Leuven, Belgium), as described by Shalom et al. (2012).

RNA deep sequencing

Extracted RNA integrity was determined by Agilent Bioanalyzer
(Santa Clara, CA, USA) according to the manufacturer’s instruc-
tions. A 2 pg aliquot of total RNA from each sample was prepared
and used for cDNA library constructions using the TruSeq mRNA
sample preparation kit according to the manufacturer’s protocol
(Illumina Inc., San Diego, CA, USA, REF 15025062). The librar-
ies (10 pmol) were run on a single read 100 nucleotide run on the
HiSeq 2000 (Illumina Inc.) on six lanes. Raw fastq files were quality
checked using FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc), and adaptor sequences were removed using fastq-
mcf (https://code.google.com/p/ea-utils/wiki/FastqMcf). They were
then aligned to the orange (Citrus sinensis) genome database (Xu
et al., 2013; http://citrus.hzau.edu.cn/orange/) using TopHat2 (Kim
et al., 2013). FPKM (fragments per kilobase of transcript per mil-
lion mapped reads) values, which normalize the read count by the
length of the fragment and the total number of mapped reads, were
calculated, and differential expression was checked using Cufflinks
(Trapnell et al., 2010). A hierarchical clustering heatmap and a 2D
principle component analysis (2D PCA) plot were generated by
MATLAB (Mathworks, Cambridge, UK), using the log-FPKM val-
ues of each gene. For gene ontology (GO) analysis, sequences were
blasted against the UniRef90 database (Suzek ez al., 2007), by which
a number of GO annotations were derived for each gene. Singular
enrichment analysis (SEA), which lists enriched GO terms, was per-
formed [false discovery rate (FDR) <0.05] for the five best GO terms
of each gene using the AgriGo interface (http://bioinfo.cau.edu.cn/
agriGO/index.php). Differentially expressed genes were also func-
tionally annotated via the automated Mercator pipeline (Lohse et al.,
2013) (http://www.gabipd.org/biotools/mercator/) and displayed on
diagrams of metabolic and other processes using MapMan (Usadel
et al., 2009; http://www.gabipd.org/projects/MapMan/).

Hormonal content analysis

About 50mg of bud tissue from each tested sample were lyophilized
and homogenized to a fine powder in liquid nitrogen using a mor-
tar and pestle. Quantification of ABA, ABA metabolites, and indole
acetic acid (IAA) was conducted at the National Research Council
of Canada (Saskatoon, Saskatchewan, Canada) according to pub-
lished protocols (http://www.nrc-cnrc.gc.ca).

Protein extraction and western blot analysis

Proteins were extracted from buds, quantified, and analysed by west-
ern blot analysis using specific primary antibodies, raised against the
following proteins: Rubisco complex large (RbcL) and small (RbcS)
subunits, ferredoxin (Fd), chlorophyll a/b protein [light-harvesting
chlorophyll a/b complex II (LHCII)], and D1 protein (PsbA), as
described by Maayan et al. (2008).

Statistical analysis

The statistical analyses used for qPCR results, hormone analy-
ses, and inflorescences numbers were one-way analysis of variance
(ANOVA) with Tukey—Kramer multiple comparison tests as imple-
mented in the software JMP version 10 (SAS Institute).
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Results
Fruit removal (de-fruiting) induces back flowering

Normally, fruit load status is similar among most trees
of the orchard—trees bear either a heavy crop (ON-Crop
year) or a low crop (OFF-Crop year). A few trees, however,
show the opposite trend, allowing the collection of samples
from nearby trees bearing either high fruit load or low fruit
load. In order to detect changes which might play a role in
converting ON- to OFF-Crop buds, fruits were completely
removed from ON-Crop trees in August and buds were col-
lected 1, 2, and 4 weeks following de-fruiting. The effect of
the treatment was verified the following spring by counting
the number of inflorescences and vegetative shoots (Fig. 1).
Citrus trees bear two major types of inflorescences: genera-
tive (leafless) and mixed (leafy; flowers and leaves in vari-
ous ratios). ON-Crop trees had significantly less generative
inflorescences compared with OFF-Crop trees and DEF
trees (22% versus 70-75%) and more vegetative shoots (43%
versus 3-4%). As expected, no significant differences were
detected in mixed-type inflorescences. Fruit counting during
harvest time showed that ON-Crop trees yielded 1635198
fruits per tree while OFF-Crop trees yielded 36+ 12 fruits
per tree.

Fruit removal alters expression of flowering control and
other genes in the bud

In order to determine how quickly buds responded to de-
fruiting, the mRNAs levels of several flowering control genes
were quantified during the course of the experiment (Fig. 2).
The Citrus genome contains three F7 genes, but only the
expression of CiFT2 correlated well with tree flowering inten-
sity (Nishikawa et al., 2007; Shalom et al., 2012). In buds of
ON-Crop trees, CiFT2 mRNA levels were relatively low, and
remained unchanged. In contrast, CiF72 mRNA was ~15-
fold higher in buds of OFF-Crop trees. One week following
de-fruiting, the expression of the gene in the buds of the DEF

100
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60
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40 ik b
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20 —
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0 L e
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Fig. 1. Fruit load affects flowering intensity the following year. Vegetative
shoots, generative inflorescences containing only flower buds, and mixed
inflorescences containing flower buds and leaves in various ratios were
counted during flowering peak in trees which carried a heavy yield (ON)
or light yield (OFF), and in de-fruited trees (DEF). The numbers are mean
values of three independent biological replicates +SE. Different letters
represent a significant difference (P<0.05).
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Fig. 2. Fruit removal alters the expression of flowering control genes in
buds. The mRNA levels (RU, relative units) of the indicated genes were
determined in ON-Crop (ON), OFF-Crop (OFF), and de-fruited (DEF) trees
at the indicated weeks following de-fruiting. The numbers are mean values
of three independent biological replicates +SE. Different letters represent a
significant difference (P<0.05) between the states at the same time point.

trees was similar to that of OFF-Crop buds, and it remained
at this level during the entire test period. The mRNA levels of
LFY were similar in buds of ON- and OFF-Crop trees, but
it increased 3-fold within 1 week in DEF buds and returned
to its basal level after 4 weeks. It was previously shown that
miRI56-regulated SPL5 displayed elevated mRNA levels in
OFF-Crop buds; thus, it may act as a positive inducer of
flowering in Citrus trees (Shalom et al., 2012). As expected,
SPL5 mRNA levels were ~14-fold higher in buds of OFF-
Crop trees as compared with ON-Crop buds. DEF buds
displayed increased mRNA as compared with OFF-Crop
buds within 2 weeks of de-fruiting. The expression of genes
associated with trehalose and flavonoid metabolism was ele-
vated in ON- and OFF-Crop buds (Shalom et al., 2012). As
expected, the mRNA levels of trehalose phosphate synthase

and trehalose phosphate phosphatase were reduced by 2- and
4-fold, respectively following de-fruiting (Supplementary Fig.
S1 at JXB online). The mRNA levels of flavonoid biosynthe-
sis genes, UF3GT, 4CL, CHS, and CHI, were induced by the
treatment. De-fruiting resulted in a reduction of C4H mRNA
levels in the ON-Crop trees.

Fruit removal induces rapid changes in the bud global
gene expression

The results indicated that the transition of the bud from an
ON to an OFF state took place relatively quickly. In order
to analyse the metabolic and regulatory pathways playing
a role in this transition, changes in global gene expression
were analysed in buds before de-fruiting (Time 0) and 1
(Time 1), 2 (Time 2), and 4 (Time 4) weeks after de-fruiting
(Fig. 3A). In addition, buds of OFF-Crop trees were also
analysed at Time 0 and Time 4. The minimum number of
reads per sample was ~15 million and the maximum was ~40
million, indicating a deep and satisfactory coverage of the
existing transcripts (Supplementary Table S3 at JXB online).
Overall, the number of transcripts in all libraries was ~14
400. Hierarchical cluster analysis (Fig. 3B, left) and 2D PCA
(Fig. 3B, right) were performed based on the log-FPKM
values of each sample. Results of both analyses showed
that during all time points, including Time 1, the transcript
profiles of DEF buds were more closely related to those of
OFF-Crop buds than to those of ON-Crop buds, thus sup-
porting the notion that the transition from an ON bud to an
OFF bud was relatively quick following de-fruiting. In order
to analyse the metabolic and regulatory pathways mediat-
ing the ON bud to OFF bud transition, two major compari-
sons were made (the ratios for all possible comparisons in
the experiment are presented in Supplementary File 2 at JXB
online). First, Time 4 included the three fruit load states, ON,
OFF, and DEF. Therefore, the genes that were up- or down-
regulated (P<0.05) in OFF or DEF buds in comparison with
ON-Crop buds were identified (Fig. 4A; Supplementary File
2). Overall, 997 genes in OFF-Crop buds and 797 genes in
DEF buds were down-regulated relative to ON-Crop buds at
Time 4, with 615 genes common to the two groups (OFF and
DEF). Overall, 959 genes in OFF-Crop buds and 920 genes
in DEF buds were up-regulated relative to ON-Crop buds
at Time 4, with 564 genes common to the two groups (OFF
and DEF) (Fig. 4A; Supplementary File 2). The second com-
parison aimed at identifying genes which showed alternation
in their expression during the course of the experiment and
also common or different pathways altered developmentally.
For that, genes were clustered according to their expression
patterns relative to Time 0. For ON-Crop and DEF buds,
four clusters were identified (Fig. 4B; Supplementary File
2). For OFF-Crop buds, only two time points were ana-
lysed, and altered genes were either reduced or repressed
(Supplementary File 2)

In order to identify common and unique metabolic and
regulatory pathways in DEF and OFF-Crop buds which
were altered in comparison with ON-Crop buds at Time 4,
up-regulated genes (564+395 and 564+356, Fig. 4A) and
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Fig. 3. Global gene expression in buds of de-fruited (DEF) trees is similar to that of buds of OFF-Crop (OFF) trees. The experimental design and sample
collection (A). Hierarchical clustering heatmap (left panel) and 2D principle component analysis (right panel) plots were generated using the log-FPKM
value of each gene for all samples, as indicated in A (B). (This figure is available in colour at JXB online.)
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Fig. 4. Venn diagrams of differentially expressed genes and clustering analysis of developmentally altered genes. The number of genes in buds of OFF-Crop
(OFF) and de-fruited (DEF) trees which were significantly (P<0.05) up-regulated (left) or down-regulated (right) compared with ON-Crop buds at Time 4 (A).
Clustering analysis of genes which were significantly (P<0.05) altered developmentally during the course of the experiment in comparison with Time O as
generated by Expender (http://acgt.cs.tau.ac.il/expander/overview.html) using the Click Algorithm (B). All genes are listed in Supplementary File 2 at JXB online.
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down-regulated genes (615+382 and 615+182, Fig. 4A) were
GO annotated and further analysed using SEA (AgriGO).
Table 1 presents these common processes. However, in a few
cases, unique GO terms were included under the same gen-
eral process either because of redundancy or because they
were part of one process. The analysis indicated that the
great majority of common processes which were enriched in
DEF/OFF-Crop buds were related to light sensing (such as
response to light stimulus/intensity and response to far red/
blue and red light), photosynthesis (such as dark and light
reactions and photosynthetic electron transport chain), chlo-
roplast reorganization (such as plastid localization, chloro-
plast relocation and organization), response to carbohydrate
stimulus (i.e. sucrose and disaccharide), ion homeostasis
(such as cation homeostasis and transport, proton trans-
port), and the pentose-phosphate cycle. Fewer genes were
down-regulated in DEF/OFF-Crop buds and belonged to
several secondary metabolic pathways such as the terpe-
noid and phenylpropanoid metabolic process, and oxidative
reduction. Major unique processes induced in OFF-Crop
buds included starch biosynthesis, carbohydrate metabolism,
glycoside and glycosinolate metabolism, and water homeo-
stasis (Supplementary Table S4 at JXB online). Considerably
more unique processes were induced in DEF buds as com-
pared with OFF-Crop buds (Supplementary Table S4).
They included regulation of peptidase activity, regulation of
dephosphorylation, and salicylic acid metabolism. Down-
regulated unique processes in DEF buds included amino
acid/amine metabolism and aromatic compound metabo-
lism (Supplementary Table S4). Responses to biotic stress
were either induced or repressed in DEF buds. Unique genes
down-regulated in OFF-Crop buds could not be GO anno-
tated, due to their low number.

GO annotation and SEA were also performed to develop-
mentally altered genes compared with Time 0 in ON-Crop,
OFF-Crop, and DEF buds (Fig. 4B). Significantly altered bio-
logical processes (FDR <0.05) could be identified for genes of
clusters 3 and 4 (DEF buds), cluster 2 (ON-Crop buds), and
up/down regulated genes of OFF-Crop buds. No significant
biological processes could be identified even under FDR <0.1
in genes of the other clusters. Cluster 4 of DEF buds included
processes involved in light responses and photosynthesis
(Supplementary Table S5 at JXB online). A considerable induc-
tion was also detected in genes of respiratory burst and in those
involved in responses to abiotic stresses. Genes up-regulated in
OFF-Crop buds from Time 0 to Time 4 were annotated into
light responses, photosynthesis, and response to carbohydrate
stimulus (Supplementary Table S6). Down-regulated genes in
OFF-Crop buds from Time 0 to Time 4 included responses
to jasmonic acid (JA) and ethylene (Supplementary Table S7).
Other processes included amino acid and amine metabolism,
and responses to abiotic stresses. Cluster 3 of DEF buds included
104 genes that could be annotated into different biological pro-
cesses, a few of them related to development and morphogen-
esis, such as trichoblast and root differentiation, floral organ
development, and shoot morphogenesis (Supplementary Table
S8). Cluster 2 of ON-Crop buds was enriched in genes associ-
ated with lipid transport (Supplementary Table S9).

An additional analysis for developmentally regulated genes
was aimed at identifying common genes in clusters showing a
similar expression pattern in OFF-Crop and DEF buds and
opposite patterns in ON-Crop buds. The first comparison
included cluster 4 of DEF buds, up-regulated genes of OFF-
Crop buds, and cluster 4 of ON-Crop buds (Supplementary
Fig. S2A at JXB online). However, only one unknown gene
was common among the three states. The second com-
parison included cluster 1 of DEF buds, down-regulated
genes of OFF-Crop buds, and cluster 3 of ON-Crop buds
(Supplementary Fig. S2B). Only the expression of three
genes was common; two of them were homologous to terpene
(nerolidol) syntheses (Cs2g07240 and Cs2g07250).

Photosynthetic genes and proteins are up-regulated in
response to fruit removal

Consistent with a previous report (Shalom et al, 2012), the
above-described results and MapMan analysis of differentially
expressed genes in DEF versus ON-Crop buds at Time 4 showed
that genes associated with light reactions, the Calvin—Benson
cycle, and to a lesser extent photorespiration were induced
(Supplementary Fig. S3 at JXB online). Fold changes of 41
photosynthetic genes in DEF and OFF-Crop buds relative to
ON-Crop buds are shown in Fig. 5A. Out of 41 differentially
expressed genes, 38 were up-regulated while only three were
down-regulated at at least one time point throughout the experi-
ment. Validation of the above results by qPCR analyses was per-
formed for seven genes, Ribulose bisphosphate carboxylase-small
subunit (RbcS), Light-harvesting chlorophyll B-binding protein
(LHCB?3), Phosphoribulokinase (PRK), Photosystem II reaction
centre PSB28 (PSB28), Photosystem I subunit D (PSAD), Serine
hydroxymethyltransferase (SHM), and Ferredoxin (Fd) (Fig. 5B).
The mRNA levels of all these genes were significantly higher in
buds of OFF trees as compared with ON trees at Time 4. As
expected, gene expression increased in DEF buds by 2.6- to
5.2-fold within 1 week of fruit removal. Furthermore, western
blot analyses using specific antibodies raised against RbcS, Fd,
LHCII, and PsbA showed that their protein level was higher
in OFF-Crop buds relative to ON-Crop buds, and increased
in DEF buds (at Time 4) following fruit removal (Fig. 5C).
However, RbcL protein levels remained unchanged in DEF and
OFF-Crop buds relative to ON-Crop buds.

Fruit removal-induced changes in ABA-metabolizing
genes

Results of genomic analysis showed that genes homologous
to 9-cis-epoxycarotenoid dioxygenase (NCED), coding for this
rate-limiting enzyme of ABA biosynthesis (Supplementary
Fig. S5 at JXB online), were higher in buds of OFF-Crop
buds relative to ON-Crop buds (Fig. 6A). In Arabidopsis, the
NCED gene family comprises nine members, and the roles
of NCED2, 3, 5, and 6 in ABA biosynthesis were demon-
strated (Tan et al., 2003). The Citrus genome contained nine
highly homologous genes, and changes in three of them
were detected in genomic analysis: Cs5g/4370.1, homolo-
gous to NCED3, Cs5g14370.1, homologous to NCEDI, and
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Table 1. Continued

DEF

OFF

Ref

Description

GO term

General process

Fold

FDR

Query P-value

item

Fold

FDR

item

Query P-value

item

enrichment®

enrichment®

Down-regulated

0.0011 2.04

0.028

1.20E-06
0.00017
0.00031

55

1.73

0.042

5.80E-05
1.20E-05
8.10E-05

58

467

Secondary metabolic process

GO:0019748

Secondary metabolism

2.64
4.46

18

2.72
217

118 0.016

Terpenoid metabolic process

G0:0006721

0.044
0.0035
0.0035

8
23

0.049

29

186

143

Isoprenoid metabolic process

GO:0006720
GO:0009699
GO:0009698
GO:0055114

2.78

1.00E-05
1.10E-05
2.60E-09
1.00E-05

Phenylpropanoid biosynthetic process
Phenylpropanoid metabolic process

Oxidation reduction

2.54

1.76

184
1344
1345

7.50E-06
0.0035

137
120

2.00E-10  7.40E-07 1.72
0.016

166
142

Various

1.54

47

1.

1.30E-05
4.30E-05

Response to chemical stimulus

G0:0042221

1.75

0.039

Response to inorganic substance 462

GO:0010035

@ Fold enrichment as calculated based on GO-annotated genes (777, 753, 821, 662 in OFF-Crop up-regulated, DEF up-regulated, OFF-Crop down-regulated, DEF down-regulated,
respectively) in the list of genes (959, 920, 997, 797 in OFF-Crop up-regulated, DEF up-regulated, OFF-Crop down-regulated, DEF down-regulated, respectively) per GO-annotated genes

(11445) in the reference list (14400 genes).

Cs7g14820.1, homologous to NCED4. Among these three
genes, NCED3-like induction was increased by ~4-fold in
OFF-Crop buds relative to ON-Crop buds at Time 0, and
was ~2-fold higher at Time 4. Fruit removal induced a 3-fold
increase at Time 1 and its mRNA level remained higher rela-
tive to ON-Crop buds throughout the experiment. Induction
of NCEDI-like was seen only in OFF-Crop buds at Time 4,
while NCED4-like was induced in DEF buds at Time 1 and
4 and in OFF-Crop buds at Time 4. Among the three genes,
NCED3 is considered the major enzyme catalysing the rate-
limiting step in ABA biosynthesis, and the mRNA levels of
its Citrus counterpart were higher in OFF and DEF buds
throughout the experiment. qPCR validation showed that
Cs5g14370.1 mRNA levels in OFF-Crop buds were signifi-
cantly higher relative to ON-Crop buds, by ~4.5-fold at Time
0 and by 2.1-fold at Time 4 (Fig. 6B). The mRNA levels in
DEF buds increased relative to ON-Crop buds by 3.2-fold
at Time 1 and remained higher throughout the experiment.
The transcriptomic data showed that the expression of a gene
homologous to PYRI, a component of the ABA receptor,
was reduced (Supplementary Fig. S6).

The levels of ABA and its catabolites were analysed at
three time points following de-fruiting (Fig. 7). In addition
to ABA and its isomer, trans-ABA (t-ABA), four catabolites
were detected in the buds, 7OH-ABA, ABA glucose ester
(ABAGE), phaseic acid (PA), and dihydrophaseic acid (DPA),
with t-ABA, PA, and ABAGE showing relatively high levels.
ABA levels in ON-Crop buds were significantly higher rela-
tive to OFF-Crop buds, by 2.4-fold at Time 0 and by 3.3-fold
at Time 4. In DEF buds, ABA levels decreased relative to
ON-Crop buds by 1.3-fold at Time 1 and by 1.8-fold at Time
4. In addition, the levels of PA and ABAGE were significantly
higher in ON-Crop buds relative to OFF-Crop buds by 4.5-
fold and 4.6-fold at Time 1 and by 7.7-fold and 2.9-fold at Time
4, respectively. In DEF buds, PA and ABAGE levels decreased
by 3.4-fold and 1.8-fold at Time 1 and by 4.1-fold and 3.5-fold
at Time 4, respectively. The levels of DPA and t-ABA were gen-
erally higher in ON-Crop buds relative to OFF and DEF buds,
especially at Time 4, but the differences were not significant.

Induction of calcium-related genes associated with
auxin transport in DEF and OFF-Crop buds

Among the genes which showed relatively high levels of
expression in OFF-Crop and DEF buds relative to ON-Crop
buds were calcium-related genes (Fig. 8A; Supplementary
File 2 at JXB online). The expression of most of these genes
was induced 3- to 40-fold at all time points of the experi-
ment. Many of these genes encode proteins containing an
EF-hand domain. PINOID (PID)-binding protein (PBPs)
are a subgroup of EF-hand proteins. PBP1 has been shown
to play a role in auxin polar transport in response to changes
in calcium levels (Benjamins et al., 2003). Four citrus PBPI-
like genes (out of the five found in the citrus genome) were
induced in DEF and OFF-Crop buds relative to ON-Crop
buds at all time points tested (Fig. 8A). Phylogenic analysis of
these genes showed remarkable homology with PBPI and its
closely related gene in Arabidopsis (Supplementary Fig. S§A).
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Fig. 5. The photosynthetic machinery is up-regulated in buds of OFF-Crop (OFF) and de-fruited (DEF) trees. Fold-change (P<0.05) in the expression

of photosynthetic genes (determined by MapMan analysis, see Supplementary Fig. S2 at JXB online) in buds of OFF and DEF trees relative to buds

of ON-Crop (ON) trees at the indicated time points. Asterisks mark genes selected for validation by gPCR analyses, and specific genes are listed in
Supplementary File 2 (A). Expression analysis of selected genes at the indicated weeks following de-fruiting, as determined by gPCR analyses (RU,
relative units). The numbers are mean values of three independent biological replicates +SE. Different letters represent a significant difference (P<0.05)
between the states at the same time point. The lower right graph shows the linear regression between the transcriptomic and transcriptional (qPCR)
data (B). Immunoblot analyses in two independent replicates of photosynthetic proteins (Rbcl, Rubisco large subunit; RbcS, Rubisco small subunit; Fd,
ferredoxin; LHCII, light-harvesting complex II; Psba, D1 protein) extracted from two replicates of buds of ON-Crop, (ON1 and ON2), OFF-Crop (OFF1 and
OFF2), and de-fruited (DEF1 and DEF2) trees at Time 4 (C). The quantification of the protein signals, generated using ImageJ software, is presented in

Supplementary Fig. S4.

Two other induced genes, Cs9¢20300.1 and Cs8g¢20150.1,
showed high homology (80% and 70%, respectively) to a cal-
cium-dependent protein kinase (A4¢/g08650.1), and to a Ca**/
H* antiporter CAX3 (At3g51860), respectively. Another gene,
Cs1g21460.1, which showed homology to members of the
NPH3 gene family from Arabidopsis also plays a role in auxin
polar transport (Furutani et al., 2011; Knauer et al., 2011; Li
etal.,2011; Wan et al., 2012). This family contains 33 genes in
the Arabidopsis genome, and the Citrus genome comprises 25
homologous genes with relatively close taxonomic relation-
ships (Supplementary Fig. S8B). The NPH3-like gene was
induced 25- to 40-fold in OFF-Crop and DEF buds relative to
ON-Crop buds at all time points tested (Fig. 8A). The plausi-
ble mechanistic relationships between calcium, PBP1, NPH3,
and the polar subcellular localization of PIN-FORMED
(PIN) auxin efflux carriers are schematically presented in
Fig. 8B. The expression levels of CAX-like, NPH3-like, two
PBPI-like genes, and one Ca**-binding EF-hand gene were

validated by qPCR analyses (Fig. 8C). The mRNA levels
of all these genes were relatively low in ON-Crop buds and
remained low throughout the experimental period. In OFF-
Crop buds, they were significantly higher at Time 0 and Time
4 (by factors of 5-19 and 10-28, respectively). One week after
de-fruiting, the expression of all these genes was significantly
increased, and within 2 weeks they attained their maximal
levels. While the mRNA levels of CAX-like, NPH3-like, and
Ca’*-binding EF-Hand1-like remained high 4 weeks after de-
fruiting, those of PBP1-likel and PBPI1-like2 were reduced
by ~2-fold and 1.5-fold, respectively, during the same period.

Auxin levels are significantly higher in ON-Crop buds
and decrease following fruit removal

Next, levels of endogenous IAA were examined in the buds
(Fig. 9). IAA levels were significantly higher in ON-Crop
buds relative to OFF-Crop buds by 2.9-fold at Time 0 and by
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(This figure is available in colour at JXB online.)

5.2-fold at Time 4. As expected, IAA levels decreased in DEF
buds relative to ON-Crop buds, by a factor of 2.4 at Time 1,
and remained at this level 4 weeks after de-fruiting.

Discussion

Intensity of return bloom is affected by de-fruiting,
which induces relatively rapid changes in expression of
flowering control genes and in the transcriptome

Fruit removal has been reported to be effective in inducing
return bloom (Monselise and Goldschmidt, 1981). However,
since annual variation and cultivar-dependent divergence may
affect its effectiveness (Verreynne and Lovatt, 2009; Martinez-
Fuentes et al., 2010; Munoz-Fambuena et al, 2011), fruit
removal was carried out as early as the last 10 d of August.
Indeed, the number of inflorescences and vegetative shoots,
counted during the following spring (Fig. 1), showed that
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those of DEF trees were similar to those of OFF-Crop
trees, thus demonstrating the effectiveness of the treatment.
Although it could be expected that the number of generative
inflorescences would be higher in DEF than OFF-Crop trees
(Verreynne and Lovatt, 2009), the actual number was identi-
cal, probably due to the low number of fruits on OFF-Crop
trees (~45-fold lower than in ON-Crop trees). De-fruiting
resulted in relatively rapid changes in the expression of genes
controlling and genes associated with trehalose and flavonoid
biosynthesis, allowing determination of the time frame of the
genomic analysis.

As a rule, the expression of flowering control genes
is induced in leaves, buds, and stems in association with
the onset of the flowering induction period (November—
December) in regular bearer cultivars, and in AB cultivars
during the OFF-Crop year, while GA treatment reduced their
expression (Nishikawa et al., 2007, Munoz-Fambuena et al.,
2011, 2012b; Shalom et al., 2012; Goldberg-Moeller et al.,
2013). CiSPLS5 is an exception to this rule, probably due to its
highly regulatory role, and it exhibited higher expression in
buds from May until September (Shalom ez al., 2012). CiFT2
expression was usually earlier than the onset of the flowering
induction period (Shalom et al., 2012). Taking into account
these expression patterns and the expected year to year alter-
nation, the mRNA levels of CiFT2 and CiSPL5 were higher
in OFF- than in ON-Crop buds. Therefore, the increase in
the expression of CiF72 and CiSPLS5 in buds of DEF trees
to levels similar to those in buds of OFF-Crop trees can be
expected, and reinforces their role in return bloom. It is not
surprising that during the time of the experiment, LFY did
not show any difference in its expression between buds of
ON- and OFF-Crop trees. Nevertheless, de-fruiting resulted
in a 2-fold increase in its mRNA level, which returned to its
basal level 4 weeks after treatment. Whether this temporary
response has any relationship to return bloom requires fur-
ther research.

The differences between bud populations—those with
a 55% chance to flower (ON-Crop) and those with a 96%
chance (OFF-Crop and DEF buds)—did not seem to be
very high. However, genomic analysis resulted in numerous
differentially expressed genes (DEGs), allowing the partial
identification of mechanisms that convert ON into OFF
buds. Previously it was shown that the number of DEGs
between ON- and OFF-Crop buds was considerably lower
in September than in May (Shalom ez al., 2012). However,
the present work showed that the number of these DEGs
was quite high. This difference could be explained by year to
year alternations, and differences in the methodologies used.
Based on a cut-off of 50% coverage between sequences on
the microarray and the currently identified sequences, and on
at least 75% identity, it is estimated that only ~30-35% of the
current sequences are present on the microarray, supporting
this notion. Only 40% of the auxin transport-related genes
(Fig. 8A) were found on the microarray. Below, three identi-
fied mechanisms, common to OFF and DEF buds, which are
altered during the conversion of DEF buds into OFF buds,
and might play a role in the signalling mechanism of fruit
load are discussed.

Induction of photosynthetic gene expression and
protein levels in the bud following de-fruiting

In agreement with Shalom ez al (2012), this study demon-
strates that de-fruiting induces expression of photosynthetic
genes in the bud. Although a recent proteomic analysis did
not show an increase in photosynthetic proteins in OFF-
Crop trees (Muiioz-Fambuena et al., 2013), here the induced
gene expression resulted in increased protein levels of four
major genes. According to the C/N theory, the proteins of
photosynthetic machinery represent the majority of leaf
nitrogen which is directly related to photosynthetic capac-
ity (Evans, 1989); thus, the induced levels of photosynthesis
proteins would suggest the induction of photosynthesis in
OFF buds, although direct evidence is missing. Although
bud photosynthesis was never measured in fruit trees, leaf
photosynthesis in relation to fruit load has been measured
in previous studies. While some workers found no change in
photosynthesis between leaves of ON- and OFF-Crop trees
(Roper et al., 1988; Monerri et al., 2011; Nebauer et al.,
2013), others reported increased photosynthetic and CO,
assimilation rates in fruit-bearing as compared with non-
fruit-bearing trees (Fujii and Kennedy, 1985; Dejong, 1986;
Gucci et al., 1995; Palmer et al., 1997; Iglesias et al., 2002;
Syvertsen et al., 2003; Urban et al., 2004). Vegetative growth
is induced in buds of OFF-Crop and DEF trees (Monselise
and Goldschmidt, 1982), suggesting that increased photosyn-
thesis may mark the initiation of vegetative growth. That is,
due to fruit absence, the OFF-Crop and DEF trees are heavily
loaded with photoassimilates, suggesting that by induction of
its photosynthetic machinery, the bud signals to stop trans-
location of photoassimilates. The possibility that the flow of
photoassimilates into the bud is reduced due to lower leaf
photosynthesis in OFF-Crop trees, resulting in increased syn-
thesis of photosynthesis proteins and higher CO, assimila-
tion, cannot be excluded.

Bud ABA is reduced in OFF-Crop trees and following
de-fruiting compared with ON-Crop trees

Increased expression of three NCED-like genes, in buds of
DEF and OFF-Crop trees compared with buds of ON-Crop
trees, suggests the induction of ABA biosynthesis. However,
direct measurements of ABA and its catabolites showed the
opposite trend, namely reduced levels in buds of OFF-Crop
and DEF trees. Direct biochemical evidence demonstrated
that NCED3 (Cs5g14370) cleaved 9-cis-violaxanthin to form
xanthoxin, a precursor of ABA (Kato et al., 20006); its expres-
sion paralleled ABA levels in the peel and during cycles of
drought and re-watering of leaves and fruit (Rodrigo ez al.,
2006; Agusti et al., 2007). Therefore, one would expect higher
ABA levels in OFF-Crop and DEF buds than in ON-Crop
buds. A possible explanation of these apparently contradic-
tory results is that the source of ABA in the ON-Crop bud
is not within the bud itself, but external to it, and depend-
ent on the presence of fruit. In OFF-Crop trees or follow-
ing de-fruiting, the translocation of ABA from this source
into the bud is blocked, at least partially, reducing the bud’s
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ABA contents, and inducing NCDE3 expression in order to
increase endogenous ABA production. Nevertheless, the pos-
sibility cannot be excluded that induced expression of NCED
genes is futile, and has no physiological role. A closer look
at ABA-responsive genes in the transcriptomic data (overall,
eight differentially expressed genes between the states) did not
solve this contradiction, as no common trend in their response
was evident (data not shown). Regardless, ABA levels (and
the expression of ABA receptor component, PYRI-like) in
OFF-Crop buds and following de-fruiting were reduced,
raising the question of its possible involvement in AB con-
trol. Consistent with the present results, buds of ON-Crop
trees have been shown to contain higher levels of ABA or its
isomer, t-ABA, than those of OFF-Crop trees (Jones et al.,
1976; Goldschmidt, 1984). It has been suggested that elevated
levels of ABA in ON organs may reflect a stress imposed by
the fruit overload. Moreover, ABA might serve as an inhibi-
tor of return bloom, since the local application of ABA to
Citrus unshiu buds in late December inhibited bud sprouting
and intensive flowering (Garcialuis et al., 1986). Alternatively,
the possibility that flowering promotes ABA activity has been
suggested, since increased ABA levels were detected in leaves
of OFF-Crop trees and following de-fruiting of ON-Crop
trees in association with flowering induction (Koshita et al.,
1999; Okuda, 2000). Whether ABA plays a role in AB con-
trol, or in other processes, such as maintaining the bud in
an inactive state (Little and Edit, 1968; Horvath et al., 2003;
Shalom et al., 2012), requires further investigation.

De-fruiting induces genes of calcium-dependent auxin
polar transport

The results showed an increase in the expression of calcium-
related genes together with significant reduction in auxin lev-
els in OFF-Crop buds and in buds following de-fruiting as
compared with ON-Crop buds. Changes in the concentration
of cytosolic free Ca** ([Ca’*].y,), mediated by ion channels,
Ca**-ATPases, and Ca’*/H" antiporters, form the basis of the
Ca®* signalling mechanism. The CAX-type antiporters are a
family of cytosolic low-affinity Ca*>*/H* antiporters, which
in Arabidopsis comprises six members. In Citrus there are
four highly CAX homologous genes, and the expression of
a CAX3 homologue was highly induced following de-fruit-
ing. Transduction of Ca®" signals is carried out by specific
calcium-binding proteins, containing a common structural
motif called the ‘EF-hand’, a helix—loop-helix structure that
binds a single Ca*>* ion (Day et al., 2002). The present results
showed a significant up-regulation of a few genes encoding
EF-hand proteins in OFF and DEF buds compared with
their level in ON buds. Overall, these results might suggest
that [Ca”]Cyt is affected by fruit load, although at this stage a
plausible scenario as to the nature of the change and its cel-
lular signature cannot be suggested. How are these changes
related to auxin polar transport? Four of the up-regulated
EF-hand genes show remarkable homology to the genes
encoding PBPI in Arabidopsis. PBP1 interacts physically
with PID protein kinase, regulating its activity in response
to changes in calcium levels (Benjamins et al., 2003). PID
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regulates the polarity of PIN proteins (Friml et al., 2004),
which are known to direct auxin flow (Wisniewska et al.,
2006). NPH3-like proteins have recently been shown to affect
PIN localization (Furutani et al., 2011; Wan et al., 2012). As
shown here, NPH3-like genes are part of a relatively large
gene family. Divergence of its different members occurred
before the divergence of Arabidopsis and Citrus. The citrus
NPH3-like gene induced in OFF and DEF buds compared
with ON buds showed very close homology to an Arabidopsis
gene which has not yet been subjected to detailed analysis.

Taken together, the present results lead to the suggestion
that higher levels of IAA in ON buds reflect their inability to
distribute IAA efficiently via the Ca’*-dependent PIN-based
polar auxin transport mechanism. In addition, efficient auxin
removal from the bud appears to be a key component in trans-
forming the ON bud into an OFF bud. The involvement of
auxin in flowering inhibition following an ON-Crop year was
recently suggested (Smith and Samach, 2013), and is based on
the ATA hypothesis proposed by Bangerth (Bangerth, 1989,
20006; Caaejas and Bangerth, 1997). The application of auxin
polar transport inhibitors resulted in flowering induction in
a number of fruit trees (Bukovac, 1968; Ben-Tal and Lavee,
1985; Tto et al., 2001; Blaikie et al., 2004; Bangerth, 2006).
The strong polar transport of auxin from the dominant sinks
(i.e. the fruit or the seed), as suggested by the ATA hypothe-
sis, preventing auxin export from the bud, would explain why
auxin levels in OFF buds and in buds following de-fruiting
are lower than in ON buds.

The parallel reduction in ABA and TAA Ilevels in the bud
would suggest cross-talk between the ABA and IAA signal-
ling pathways. Such cross-talk interactions were suggested in
Arabidopsis embryo axis elongation and root development
(Belin et al., 2009; Shkolnik-Inbar and Bar-Zvi, 2010; Wang
et al., 2011), but not in flowering control processes.

Supplementary data

Supplementary data are available at JXB online.

Supplementary File 1

Figure S1. De-fruiting alters the expression of trehalose-
and flavonoid-metabolizing genes.

Figure S2. Venn diagrams of
regulated genes.

Figure S3. Photosynthetic genes are induced following de-
fruiting in the bud.

Figure S4. Quantification of protein blot results (Fig. 5C).

Figure S5. Schematic representation of the cleavage of
9-cis xanthophylls to xanthoxin by 9-cis-epoxycarotenoid
dioxygenase (NCED), a key regulated step in the biosynthesis
of ABA in plants.

Figure S6. Changes in the expression of the P YRI-like gene.

Figure S7. Linear regression between transcriptomic and
transcriptional (QPCR) data of Ca-related and NPH3-like
genes, presented in Fig. 8A and B.

Figure S8. Genes encoding PINOID (PID)-binding protein
1 (PBPI1) and Non-Phototropic Hypocotyl 3-like (NPH3)
show homology in Arabidopsis and Citrus.

developmentally
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Table S1. List of primers used in this study.

Table S2. List of genes used to design probes for nCounter
analysis (Shalom et al., 2012).

Table S3. Statistical data of deep sequencing analysis.

Table S4. GO categorization of unique genes up- or down-
regulated in buds of OFF-Crop and de-fruited (DEF) trees
relative to buds of ON-Crop trees during Time 4.

Table S5. GO categorization of genes of cluster 4 of
DEF buds.

Table S6. GO categorization of up-regulated genes of
OFF-Crop buds.

Table S7. GO categorization of down-regulated genes of
OFF-Crop buds.

Table S8. GO categorization of genes of cluster 3 of
DEF buds.

Table S9. GO categorization of genes of cluster 2 of
ON-Crop buds.

Supplementary File 2

The file includes: (i) all possible comparisons between the
treatments; (ii) the accession numbers of genes presented
in the Venn diagrams (Fig. 4A, B; Supplementary S2A, B);
(iii) photosynthesis genes (Fig. 5A); and (iv) calcium-related
genes (Fig. 8A).
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Abstract

Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light
yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural
importance, how the developing crop influences the following year’s return bloom and yield is not fully understood. It
might be assumed that an ‘AB signal’ is generated in the fruit, or in another organ that senses fruit presence, and moves into
the bud to determine its fate—flowering or vegetative growth. The bud then responds to fruit presence by altering
regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of
this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression
in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than
ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points.
Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such
as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism
was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in
OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and
annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes
suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the
flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and
OFF buds.
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Introduction factors that ultimately impact the floral intensity; the heavy ON
crop reduces return bloom the following spring, whereas the light
OFF crop results in an intense return bloom the following spring.
Fruit thinning or complete removal (defruiting) as late as

Alternate bearing (AB) is the process by which cycles of heavy
yield (ON crop) one year are followed by a light yield (OFF crop)
the next (reviewed in [1]). AB occurs in both deciduous and
evergreen fruit and nut tree crops and in forest trees (where it is
called “masting”), regardless of their annual reproductive and
vegetative cycles. Although in general, the ON and OFF cycles are
biennial, in some cases an ON year can be followed by two or
more consecutive OFF years, and vice versa. In the classical, most
common AB, the OFF year is characterized by low floral intensity
(reduced flower number), resulting in low yield, and high
vegetative shoot growth, whereas the opposite occurs during the
ON year. In some cases, flowering is not limited, but heavy flower
and/or fruitlet drop lead to AB. Synchronization among different
trees at the plantation/region level is typically initiated by
environmental conditions (such as low and high temperatures,
water deficit, etc.) that reduce yield. Once initiated, AB becomes
entrained through the effect of crop load on endogenous tree

September to December of the ON-crop year induces flowering
and yield in the following year [2-5]. AB has significant economic
consequences in many important tree crops. In citrus, during the
low-yield OFF year, a significant proportion of the fruit are too
large. During the ON year, many small-size fruit with low
commercial value are produced.

The mechanism(s) by which the developing crop influences
return bloom and yield the following year is not fully understood.
Two hypotheses have been suggested. The “nutritional” hypoth-
esis holds that return bloom and yield are proportional to tree
carbohydrate status. Lack of carbohydrate in the ON year directly
or indirectly reduces flowering the following year [6]. Support for
this hypothesis has been provided by showing positive correlations
between carbohydrate levels and AB status [7-13], whereas others
have shown no consistent relationship between tree carbohydrate
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status and floral intensity at return bloom [2,3,14-19]. The
“hormonal” hypothesis proposes that developing fruit produce an
inhibitor that directly or indirectly reduces flowering in the spring
following the ON crop [20-22]. Although a number of studies
have shown correlations between abscisic acid or indole-3-acetic
acid and AB status [4,13,23-26], no direct evidence has been
provided for their involvement in the return bloom. Gibberellin
(GA) is well-known inhibitor of flowering in citrus; thus, fruit-
produced GA has been presumed to be involved in AB [27,28].
Despite these findings, the roles of carbohydrates and hormones in
AB remain unclear and more research is needed to identify factors
affecting floral intensity following ON and OFF years. Genetic
analysis of AB in apple identified a few QTLs associated with AB,
and suggested that hormone-related genes are likely to play a role
in the phenomenon [29].

The floral induction period in citrus starts in mid-November
and lasts until approximately the end of December to mid-January
(Figure S1, the annual cycle in citrus) [30]. Following induction,
the bud enters a short resting period, after which the shoot apical
meristem differentiates into a floral bud [31,32]. In parallel to the
floral shoot flush, there is a flush of vegetative shoot growth (Figure
S2), which continues through June (Spring flush). A second flush of
vegetative shoot growth starts in July (Summer flush), and third
flush starts in October (Fall flush). Usually, next year flowering
occurs mostly on the spring vegetative flush [33]. Flowering in
citrus is induced by low temperature, while day length has a
relatively minor effect [30]. There is extensive cross-talk between
autonomous and vernalization flowering pathways and ample
evidence that genes associated with flowering regulation are highly
conserved across species [34]. Indeed, citrus genes homologous to
Arabidopsis flowering control genes most likely possess similar
functions. For instance, overexpression of the citrus FLOWERING
LOCUS T (FT), arabidopsis LEAFY (LFY) and arabidopsis
APETALAI (API) genes in citrus greatly reduced the juvenile
period, allowing flowering at the seedling stage [35-37]. FT was
shown to be induced during the annual transition to floral
development [38]. In addition, /7 transcript accumulated in trees
subjected to low-temperature floral-inductive conditions [38].
Opverexpression of the citrus LFY, API and SUPPRESSOR OF
OVEREXPRESSION OF CONSTANSI (SOCI) genes in Arabidopsis
resulted in phenotypes similar to those observed when the
endogenous genes were overexpressed, and CsLFY and CsAPI
rescued Arabidopsis mutants in the respective genes [34,37]. Similar
findings were demonstrated for the citrus TERMINAL FLOWER
homolog (CsTFL) [39]. Inverse relationships were found between
fruit load and the expression of FT, AP! and SOC! in the leaves of
‘Moncada’ mandarin, especially during the flowering induction
period [40].

Fruit presence inhibits return flowering. However, it is not clear
at which stage the fruit exerts its inhibitory effect: at flowering
induction, transition of the shoot apical meristem to floral
meristem, or subsequent stages of floral development and bud
break. Moreover, the nature of the signal (‘AB signal’) and the
organ or tissue from which it originates, be it the fruit itself or the
leaf which senses fruit presence, are not known. Regardless of the
source tissue for the AB signal, it must be received, directly or
indirectly, at the bud, and more specifically, at the apical meristem
which has to “decide” whether to develop into an inflorescence or
remain a vegetative meristem. Therefore, following perception of
the signal, the bud must undergo a series of events which depend
on fruit load. In the current work, we analyzed changes in global
gene expression during bud development in ON and OFF trees, to
identify metabolic and controlling pathways that play a role in bud
fate. To determine the earliest time point for the transcriptome
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analysis, we first analyzed changes in bud morphology during its
development, and changes in the expression of key flowering
control genes. Based on those results, global gene-expression
analysis was carried out at a few key time points in the buds, which
receive the ‘AB signal’, and in leaves and stems, which might play
a role in generating and transporting the signal.

Materials and Methods

Plant material

Plant material was collected from a commercial orchard of 10-
year-old Murcott mandarin (Citrus reticulate Blanco) trees grafted on
sour orange (Citrus aurantium L.), located in the central coastal area
of Israel, during the years 2009 (an OFF year) and 2010 (an ON
year). Although most of the trees in the orchard yielded similarly in
a given year, some were exceptional and showed an opposite AB
trend. These and nearby trees with the opposite yield status were
selected. Overall, nine pairs of trees were chosen, with each three
pairs (ON tree and nearby OFF tree) being considered one
biological replicate. Comparisons included the two most extremes
conditions in regards to chance to flower of buds on the spring
flush (Figure S2): fruit-bearing flush of an ON tree and fruitless
flush of an OFF tree. About 10 fruitless branches from OFF trees
and about 25 fruit-bearing branches from ON trees (Figure S2),
collected from the southeast side of the tree, were taken to the
laboratory on ice. Leaves and stems and at least 10 buds were
removed from the 2 to 3 most distal nodes of one OFF fruitless
spring flush (Figure S2) and immediately frozen in liquid nitrogen.
Leaves and stems and all buds of a fruit bearing ON spring flush
(Figure S2) were removed and immediately frozen in liquid
nitrogen. Samples were kept at —80°C until processing. For the
genomic analyses, the collections of leaves, stems and buds was as
the following in regards to fruit development (Figure S1): mid-May
stage I [41], mid- July, early stage II and mid-September, late
stage II. For gene expression analyses, samples were collected
during the middle of the indicated month. The numbers of
inflorescences and vegetative shoots were determined for all of the
branches splitting from one major 50- to 60-mm diameter branch
located on the southeast side of the tree, during peak blossom,
usually the first third of April of the consecutive year. Selection of
the sampled branch was performed prior to bud break.

Light microscopy

Buds were collected and fixed in an FAA solution [10
formaldehyde:5 acetic acid:85 ethanol (70%), v/v]. Fixation was
followed by an ethanol dilution series and subsequent stepwise
exchange of ethanol with Histoclear (xylem substitute). Samples
were embedded in paraffin and cut by microtome (Leica RM2245)
into 12-um sections. Sections were stained with safranin and fast
green [42], and examined under a light microscope (Olympus
BX50, 50-100 x magnification).

RNA extraction and gene-expression analysis by real-time
PCR

Total RNA was extracted from buds and from leaves and stems
(LLS) using the CTAB extraction method [43]. For buds,
approximately 0.2 g of frozen tissue was used, and approximately
2 g of tissue for LS. The volumes of the extraction solutions were
adjusted to the amount of starting material. RINA was treated with
RQI1 RNase-free DNase (Promega, Fitchburg, WI) according to
the manufacturer’s instructions. RNA quantity was analyzed in a
NanoDrop ND-1000 Spectrophotometer (Wilmington, DE) and
RNA quality was determined by Agilent Bioanalyzer (Santa Clara,
CA). cDNA was synthesized from 1 pg RNA using OligoT as a
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primer and M-MLV Reverse transcriptase (Fermentas, Burling-
ton, Ontario, Canada) in a final volume of 25 ul containing the
commercially supplied buffer. Primers for the genes CiF71/2/3,
CsAP1, SOCI1, CsLFY, f-actin, and dual-labeled probes for GiFT1/
2/3 were designed based on genomic and EST sequences
(Phytozome, http://www.phytozome.net/, HarvEST, http://
harvest.ucr.edu/) using Primer 3 software (Table S1). For the
SYBR green reactions, real-time PCR was carried out in a
reaction mix containing 2 UM gene-specific forward and reverse
primers, 3 pl cDNA (diluted 1:16), KAPA SYBR FAST gqPCR
Master Mix (2 x) Universal (KAPA Biosystems, Boston, MA), and
Ultra-Pure water (Fisher Biotech, Wembley, Australia) in a final
volume of 12 pl in a Corbett Rotor-Gene 6000 (Qiagen, Venlo,
The Netherlands). Reactions were run for 40 cycles of 10 s at
95°C, 15 s at the annealing temperature for each gene, 20 s
extension at 72°C, and the threshold level was determined. For the
dual-labeled probe reactions, real-time PCR was carried out in a
reaction mix containing 2 uM gene-specific forward and reverse
primers, 2.5 uM dual-labeled probes, 3 ul cDNA (diluted 1:16),
TagMan Universal PCR (2x) Master Mix (Applied Biosystems,
Inc., Foster City, CA) and Ultra-Pure water in a final volume of
12 pl in the Rotor-Gene 6000. Reactions were run for 40 cycles of
15 s at 95°C, 60 s annealing and extension at 60°C, and the
threshold level was determined. Standard curves were generated
for each gene using serial cDNA dilutions. Relative concentration
of the product was calculated by the algorithm of the Rotor-Gene
software using the C'T value. Relative expression (RE) was defined
as the ratio between the relative concentration of each gene and
that of f-actin. The expression of miR156 was determined using
TaqMan® Small RNA Assay Kit (Applied Biosystems) according
to manufacturer’s instructions; 10 ng total RNA was used, and
real-time PCR was run in the Rotor-Gene 6000. The results were
normalized against f-actin.

nCounter analysis

The RNA levels of trehalose biosynthetic genes, flavonoid
biosynthetic genes, SQUAMOSE PROMOTER BINDING-like (SPL-
like) gene and the reference genes, f-actin, cyclophilin and
polyubiquitin 2, were determined by nCounter analysis (Nanostring
Technologies, Seattle, WA) at VIB MicroArrays Facility (Leuven,
Belgium) according to the manufacturer’s instructions [44]. Probe

design was based on genomic sequences (http://www.phytozome.
net/, Table S2).

Microarray hybridization analysis

For global gene expression, the citrus GeneChip (Affymetrix,
Inc., Santa Clara, CA) carrying 30,171 probes was used. The
array 1Is estimated to represent about 15,500 genes. RNA samples
were processed as recommended by the Affymetrix GeneChip
Expression Analysis Technical Manual at the Center for Genomic
Technologies of the Hebrew University of Jerusalem. Total RNA
was quantified and then adjusted to a final concentration of 1 pg/
ul. Single-stranded and then double-stranded ¢cDNA was synthe-
sized from total RNA (0.5 ug total RNA for each reaction) using
oligo-dT primer and the Affymetrix One-Cycle Labeling Kit and
control reagents. The resulting double-stranded c¢DNA was
column-purified and then used as a template to generate biotin-
tagged cRNA from an @-vitro transcription reaction performed
with the Affymetrix GeneChip IVT Labeling Kit. The resulting
biotin-tagged cRNA (15 pg) was fragmented into strands of 35 to
200 bases in length following published protocols (Affymetrix
GeneChip Expression Analysis Technical Manual) and then
hybridized at 45°C with rotation for 16 h (Affymetrix GeneChip
Hybridization Oven 320) with the Affymetrix Citrus Genome
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array. The arrays were washed and then stained (EukGE-WS2v5
protocol, p 2.3.11) using SAPE and biotinylated anti-SA in an
Affymetrix Fluidics Station 450 followed by scanning in a
GeneChip Scanner 3000. Hybridizations were carried out in
triplicate, each replicate representing one experimental block.
Data processing, including signal analyses, normalization and
background subtraction, were carried out using Robust Microchip
Analysis (RMA), as described previously [45]. Statistical test for
significantly differentially expressed probes was carried out with
the Linear Model for Microarray (limmaGUI) as described
previously [46].

Gene ontology (GO) analysis was performed using the AgriGo
interface (http://bioinfo.cau.edu.cn/agriGO/index.php). Singular
enrichment analysis (SEA), which lists enriched GO terms, was
used. Differentially expressed probe (DEP) sets were displayed on
diagrams of metabolic and other processes using MapMan [47].

Flavonoid content analysis

Buds (200 to 300 mg) were pulverized in liquid nitrogen using a
mortar and pestle and the powder was transferred to a 15-ml tube.
Three volumes of water-saturated n-butanol were added, and the
mixture was vortexed for a few minutes, then incubated under
shaking (200 rpm) for 12 h at room temperature. Following short
centrifugation (15,000 RPM at room temperature) and phase
separation, the upper phase was collected into a fresh tube, and
incubated at room temperature for 1 h to allow the butanol to
evaporate. Samples were filtered through a Millex-HV Durapore
(PVDF) membrane (0.22 um) before injection into the LC-MS
instrument. MS analyses were carried out by the ultraperformance
LC-quadrupole time of flight (UPLC-QTOF) instrument (Waters
Premier QTOF, Milford, USA), with the UPLC column
connected on-line to a PDA detector (Waters Acquity), and then
to the MS detector equipped with an electrospray ion (ESI) source
(performed in ESI-positive mode). Separation was performed on a
2.1x50 mm id., 1.7-um UPLC BEH C18 column (Waters
Acquity). The chromatographic and MS parameters were as
follows: the mobile phase consisted of 0.1% formic acid in water
(phase A) and 0.1% formic acid in acetonitrile (phase B). The
linear gradient program was: 100% to 95% A over 0.1 min, 95%
to 5% A over 9.7 min, held at 5% A for 3.2 min, then returned to
the initial conditions (95% A) in 4.2 min. The flow rate was
0.3 ml/min, and the column temperature was kept at 35°C.
Masses of the eluted compounds were detected with a QTOF
Premier MS instrument. The following settings were applied
during the UPLC-MS runs: capillary voltage of 3.2 kV, cone
voltage of 30 eV, collision energy of 5 eV, and argon as the
collision gas. The following settings were applied during the
UPLC-MS/MS run: capillary spray of 3.2 kV, cone voltage of
30 eV, collision energies of 15 to 25 eV, and argon as the collision
gas. The m/z range was 70 to 1,000 D. The MS system was
calibrated using sodium formate, and Leu-enkephalin was used as
the lock mass. MassLynx software version 4.1 (Waters Inc.) was
used to control the instrument and calculate accurate masses.

Statistical analysis

ANOVA test for qPCR results, bud measurements and
metabolomic data was conducted using the JMP® version 10
software (SAS Institute Inc. Cary, NC).

October 2012 | Volume 7 | Issue 10 | e46930



Results

Flowering intensity and bud size are affected by fruit
load

Normally, fruit load status in an AB variety is similar among
most of the trees in an orchard in a given year, i.e., most trees
either bear a heavy crop (ON-crop year) or a low crop (OFF-crop
year). A few trees, however, show the opposite trend, allowing the
collection of samples from both AB states from nearby trees. Buds,
leaves and stems of heavy-loaded and low-loaded Murcott trees
from the same orchard were collected from May, soon after fruit
set, until January, the end of the flowering induction period.
Flowering intensity of these trees was assessed the following spring
(Figure 1). Citrus bears three types of inflorescences: generative
(leafless), mixed (leafy, flowers and leaves at various ratios) and
vegetative. As expected, in the following spring, ON-crop trees
had significantly less generative inflorescences (80% vs. 15%) and
more vegetative shoots (65% vs. 5%) than OFF-crop trees. No
difference was detected in mixed-type inflorescences. Fruit
counting during harvest time showed that ON trees yielded
232%33 fruits/tree, while OFF trees yielded 1542*102 fruits/
tree. Buds were measured during the collection period using light
microscopy. Usually, there were two adjacent buds in the same
position (Figure 2A). External width and height measurements of
buds from ON- and OFF-crop trees showed that bud height is
slightly induced from May until September, with no difference
between ON and OFF-crop buds (Figure 2B). Bud width did not
change significantly from May until January, but OFF-crop buds
were already significantly larger than ON-crop buds in May.
Microscopic analyses of buds from May to January showed no
structural differences, with each pair of buds having its own
meristem and leaf primordia (not shown).

Seasonal changes in the expression of flowering genes in
buds of ON- and OFF-crop trees

The mRNA levels of key flowering genes were measured in buds
of ON- and OFF-crop trees at a few time points: mid-May—
immediately after fruit set, mid-July—1 month after natural fruit
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Figure 1. Effect of ON- and OFF-crop years on flowering
intensity. Vegetative shoots, generative inflorescences containing only
flower buds, and mixed inflorescences containing flowers and leaves,
were counted during flowering peak in trees which carried heavy yield
(ON) and light yield (OFF) during the previous year. Mean number of
three biological replicates * SE. Stars denote a significant difference
between ON and OFF buds (P<<0.05).
doi:10.1371/journal.pone.0046930.g001

PLOS ONE | www.plosone.org

Alternate Bearing in Citrus

thinning (June drop), and mid-September—the last time point at
which fruit removal during an ON-year reverses the AB trend. In
addition, samples were collected from mid-November until mid-
January, considered the flowering induction period (Figure 3). The
following genes were selected (genes names are in accordance with
the original work in which they were functionally characterized):
GiFT [35], CsAPI, CsLFY [37] and SOCI [34]. Three GiFT genes
were analyzed. Originally, the expression of three transcripts of
CiFT were characterized, CiFT1, CiFT2 and CiF13, based on the
EST database [38]. However, when comparing the sequences of
these three ESTs to the full genome sequence of citrus (http://
www.phytozome.org/), it became evident that CiFT7 and CGiFT2
are most likely encoded by a single gene (Clementine0.9_025420),
while GiFFT3 is encoded by a different one (Clementine0.9_033594)
[48]. In addition to these two genes, another gene, highly
homologous to F7, was found in the genome sequence
(Clementine0.9_023363) with no representative in the EST database.
In the current work, the transcript of Clementine0.9_023420 is
denoted CiFT1, that of Clementine0.9_033594 is denoted CiFT2 and
that of Clementine0.9_023363 is denoted CiFT3.

The mRNA levels of CiFT1 were significantly induced in ON
and OFF buds from May to July, decreased toward September,
and remained relatively low during the flowering induction period
until January. During May and July, ON buds displayed higher
transcript levels than OFF buds. The mRNA levels of CiF72 in
buds of OFF-crop trees showed a gradual increase of 35-fold
overall from September to January. Although gene expression of
CiFT2 in buds of ON trees showed a similar pattern, it was
significantly lower than in OFF buds during this period. The
expression of GiFT3 in OFF buds was relatively low and did not
change during the tested period. However, in ON buds, it was
induced about 10-fold from July to September, and then decreased
to levels similar to those of OFF buds from November until
January (Figure 3).

In May, the transcript levels of CsAPI were about 2-fold higher
in buds of ON trees than OFF trees. From July until September,
the transcript levels were quite similar in buds from both tree types
but, as expected, during the induction period, from November
until January, there was a ca. 2.5-fold induction in transcript levels
in OFF buds, whereas no such induction was detected in ON buds
(Figure 3).

The expression of SOCI showed a very similar pattern
throughout the tested period in ON and OFF organs. Buds of
OFT trees showed a ca. 2-fold increase in mRINA levels relative to
ON buds. However, transcript levels were reduced to minimal
levels in September, and were then induced about 4-fold in both
ON and OFF buds until December, followed by a small reduction
toward January (Figure 3).

The expression of CsLFY in OFF buds fluctuated during the
tested period, with a ca. 4-5-fold increase from December to
January. ON buds displayed relatively constant transcript levels
during the tested period (Figure 3).

Changes in global gene expression in ON vs. OFF trees
Rationale of the sampling. The above results showed that
there was already a clear difference in the sizes of ON and OFF
buds in May. Moreover, the mRNA levels of four key flowering
control genes,GiFT1, CsAPI, SOCI and CsLEFY, showed significant
differences between ON and OFF buds at that time point. These
results thus suggested that changes in metabolic and regulatory
pathways between organs of ON and OFF trees can be expected
in as early as May, soon after flowering and fruit set. Therefore,
global gene-expression analysis was carried out using RNA
extracted in mid-May from ON and OFT buds, as the organ
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Figure 2. Bud morphology in ON- and OFF-crop trees. Buds were collected from ON- and OFF-crop trees in mid-July (A) and during the
indicated months (B), fixed, dissected, dyed and photographed. Bud width and length were measured following photography (B). Mean values of 50
buds = SE. Stars denote a significant difference between ON and OFF buds during the same time point (P<<0.02).

doi:10.1371/journal.pone.0046930.g002

which receives the AB signal, and from pooled RNA of leaves and
stems (LS), presumably playing a role in generating and
transporting the AB signal. We also included an additional time
point, mid-September, using RNA from the above organs.
Assuming that by the induction period (November through
January), the AB signal has already been generated, pooled
RNA extracted from buds in December and January was included
in the analysis.

Hierarchical cluster analysis and statistical analysis of
hybridization results. Transcriptome analysis was carried out
with the above samples using the Citrus Genome Array
(Affymetrix) containing 30,171 probes and estimated to represent
about 15,500 genes (Table S3). Hierarchical cluster analysis
(Figure 4A) showed that the highest level of similarity in the
transcription profile was in the same organ between its ON and
OFT states at the same time point; different organs at the same
time point showed higher levels of similarity in their transcription
profiles than the same organs at different time points. Moreover,
when comparing the number of DEPs (P=0.05) between buds and
LS (regardless of time point and AB state), between ON and OFF
states (regardless of time point and organ), and between May and
September (regardless of AB state and organ), the highest number
was found in the comparison of dates only (15,059); it was lower
when comparing tissues only (12,770), and lowest when comparing
AB states only (819).

As a comparison of the two AB states was the main target of this
study, the number of DEPs in ON and OFF buds and ON and
OFF LS at the various time points is presented in Figure 4B.
Overall, the highest number of DEPs was detected in May for both
buds and LS (6222), while much lower numbers of DEPs were
found for buds and LS in September and December—January (263
and 165, respectively). Buds in May displayed the highest number
of DEPs: 2205 probes with higher expression in the ON year (of
which 510 displayed at least a 2-fold change) and 3087 probes with
higher expression in the OFF year (of which 506 displayed at least
a 2-fold change). For LS in May, 531 DEPs were found in the ON
year (of which 256 displayed at least a 2-fold change) and 399
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DEPs in the OFF year (58 displaying at least a 2-fold change).
Only 1 and 2 DEPs were found in September buds during ON
and OFF years, respectively, whereas the numbers during the
induction period were 58 and 107 for ON and OFF vyears,
respectively. In September LS, 42 and 218 DEPs were found in
ON and OFF years, respectively. In searching for probes which
were significantly (P=0.05) induced in OFF trees, in association
with flowering induction, regardless of time or tissue, the probe
Cit.6595.1.51_at displayed the highest differential expression. As
presented below, this probe was homologous to SPL transcription
factor from Arabidopsis.

Specific pathways which are altered in ON and OFF trees
in May

Considering the high number of DEPs in May relative to the
other time points, GO and other analyses were performed only for
ON and OFF trees in May. Overall, 1767 (out of 2205) and 2359
(out of 3087) DEPs induced in the ON year and OFF vyear,
respectively, were GO annotated (Table S4). SEA was performed
on those probes showing at least a 2-fold change. In addition, all
induced and reduced probes in the buds were analyzed by
MapMan for altered metabolic and regulatory pathways.

Processes induced in OFF trees relative to ON
trees. None of the biological processes which were induced in
OFF LS could be identified by SEA—only those in the buds were
(Table 1). In buds, major enriched processes included pathways of
secondary metabolism, phenylpropanoid, flavonoid and alkaloid
metabolisms, and processes related to light and irradiation
responses (including red/far red light) and photosynthesis. Analysis
of induced and reduced probes by MapMan confirmed these
results, as shown in the general metabolism scheme (Figure 5,
Table S5). For secondary metabolism, most of the altered probes,
belonging to terpene, flavonoid and phenylpropanoid metabo-
lisms, were induced in the OFF buds. Metabolic pathways for
some amino acids, such as serine, glycine, and cysteine, were also
induced in the OFF buds. Strikingly, most of the probes belonging
to the photosynthetic pathways, light reactions, photorespiration
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Figure 3. Differences in flowering control genes in ON vs. OFF buds. mRNA levels of the indicated genes in ON and OFF buds were
determined by real-time PCR during the indicated months. Mean values of three independent biological replicates = SE. Stars denote a significant
difference between the expression of the gene in ON and OFF buds during the same time point (P<<0.05).

doi:10.1371/journal.pone.0046930.9g003

and Calvin cycle were significantly induced as well (Figure S3,
Table S6). For starch metabolism, the picture seemed more
complex, as both probes belonging to starch catabolism and
synthesis were induced (Figure 5). Probes for the TCA cycle were
moderately induced.

Processes induced in ON trees relative to OFF
trees. Only one process was induced in LS during the ON
year—Cell Wall Organization (GO:0009664)—which showed
about  18-fold enrichment (P=24E-7; false discovery
rate = 0.0012). Similarly, in ON buds, the metabolism of glucan,
a cell-wall component, showed induction (Table 2, Figure 5, Table
S5). Other processes induced in the ON buds were involved in
disaccharide and polysaccharide metabolism (Table 2), including
trehalose and sucrose metabolisms (Figure 5, Table S5).

Expression of citrus SPL-like and miR156

As already mentioned, an SPL-like probe showed the highest
induction level in OFF vs. ON LS and buds at all tested time
points. SPL genes make up a family of transcription factors which
have been previously shown to affect flowering time and phase

change in Arabidopsis [49]. The citrus SPL-like gene showed the
highest homology to SPL3, SPL4 and SPL5 from Arabidopsis.
Members of the Arabidopsis SPL gene family contain a miR156-
binding site, and direct evidence has been provided that miR156
represses the expression of some of them [50]. A putative miR156-
binding site was present in the 3'UTR of the citrus SPL-like gene.
Expression of the citrus SPL-like gene was analyzed in ON and
OFF buds throughout the year using nCounter technology
(Figure 6). In OFF buds, its expression was reduced from May
until the induction period. As expected, the expression in OFF
buds was significantly higher than in ON buds from May to
December. The expression pattern of miR156 was also investigated
in ON and OFF buds. No difference was detected between them,
but the expression was slightly reduced from May until September
and then induced from September and throughout the flowering
induction period, in correlation with the repression in SPL-like
gene expression.
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Figure 4. Differences in global gene expression in ON- vs. OFF-crop trees. Hierarchical cluster analysis of global gene expression in buds
and leaves+stems (LS) in ON-crop (On) and OFF-crop (Off) trees at the indicated times (A). Venn diagrams of differentially expressed probes, induced

in buds and LS of ON- and OFF-crop trees during the indicated months.

doi:10.1371/journal.pone.0046930.g004
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Expression analyses of genes of trehalose and flavonoid

metabolisms, and metabolomic analyses of flavonoids

Global gene-expression analysis showed that probes encoding
trehalose metabolism enzymes are induced in ON buds (Figure 7,
lower panel). Validation of the microarray results by nCounter
technology revealed that the two genes of trehalose metabolism,
encoding trehalose phosphate phosphatase (7PP) and trehalose
phosphate synthase (7PS), are indeed induced in ON buds in May,
although the fold-change was lower than that detected for their
corresponding microarray probes (Figure 7, upper panel). During
the following months, no significant change in these two genes’
expression was detected between ON and OFF buds, and their
pattern of expression was different, especially from September to
January (Figure S4).

Probes for six genes of the flavonoid metabolic pathway, 4-
coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS),
chalcone isomerase (CHI), isoflavone reductase (/FR) flavonol
synthase (FLS), and UDP-glucose:flavonoid-3-O-glucosyltransfer-
ase (UF3GT) were induced in OFF buds in May, whereas the
probe for one gene, cinnamate 4-hydroxylase (C4H), was reduced
in these buds (Figure 8, lower panel). Validations were therefore
carried out for the 11 genes of the flavonoid biosynthetic pathway
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(Figure 8, upper panel). As expected, genes encoding 4CL, CHS,
CHI and UF3GT showed significantly higher expression (more
than 2-fold) in buds of OFF trees as compared to those of ON
trees. One gene, [FR, showed only marginal induction in OFF
buds, as compared to 2-fold induction in the microarray results.
The analysis also confirmed the transcriptome analysis result that
the gene for C4H is induced in ON buds. However, as opposed to
the microarray results, one gene, FLS, showed no significant
induction in the nCounter analysis. Other genes of the flavonoid
biosynthesis pathway, phenylalanine ammonia-lyase (PAL), dihy-
droflavonol 4-reductase (DFR), flavanone 3-hydroxylase (F3H) and
Anthocyanidin synthase (4S), showed no change in their transcript
levels between ON and OFT buds. The expressions of all 11 genes
were analyzed from May until January, but most of them showed
no significant change between ON and OFF buds at the rest of the
time points (Figure S5).

The flavonoid biosynthetic pathway was further investigated by
metabolomic analysis of a few flavonoids in ON and OFF buds
during May using UPLC-QTOF-MS. The following compounds
were identified by accurate mass, fragmentation pattern and a few
standards: naringin/narirutin, hesperidin/neohesperidin, pon-
cirin/didymin (flavonones), diosmin (flavone). In agreement with
the gene-expression analyses, the intensities of all tested com-
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pounds were higher in OFF buds than ON buds, although with
varied significance (Figure 9), suggesting that flavonoid biosynthe-
sis is induced in OFF buds, allowing an increase in these four
flavonoid groups.

Discussion

Bud population and morphology in ON and OFF trees
The effect of year 1 yield on the return bloom of year 2 was as
expected: heavy yield resulted in a lower number of flowers and
higher number of vegetative buds, whereas the opposite was true
following a light yield (Figure 1). Overall, buds collected during
year 1 from OFF trees had a ca. 95% chance of flowering, as
compared to buds collected from ON trees which had a ca. 30%
chance of flowering. No effect of year 1 yield was detected on
mixed-type shoots (inflorescences containing flowers and leaves at
various ratios), only on generative buds (inflorescences carrying
only flowers with no leaves). Indeed, while fruit load and flowering
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Table 1. Gene ontology (GO) categorization of genes induced in OFF buds.
GO term Description % in input list % in BG/Ref p-value FDR Fold enrichment
G0:0019748 secondary metabolic process 5.5336 1.2429 7.00E-10 6.60E-07 4.45
G0:0009698 phenylpropanoid metabolic process 3.1621 0.5005 2.20E-08 6.70E-06 6.32
G0:0009812 flavonoid metabolic process 2.5692 0.3149 2.00E-08 6.70E-06 8.16
G0:0009699 phenylpropanoid biosynthetic process  2.5692 0.4707 2.20E-06 0.00052 5.46
G0:0009813 flavonoid biosynthetic process 1.9763 0.3016 6.30E-06 0.0011 6.55
G0:0010017 red or far-red light signaling pathway  1.1858 0.0895 7.30E-06 0.0011 13.25
G0:0009639 response to red or far-red light 1.7787 0.2519 9.70E-06 0.0013 7.06
G0:0009821 alkaloid biosynthetic process 1.1858 0.1061 2.10E-05 0.0024 11.18
G0:0009820 alkaloid metabolic process 1.9763 0.3546 2.60E-05 0.0027 5.57
GO0:0019438 aromatic compound biosynthetic 2.9644 0.8120 5.10E-05 0.0048 3.65
process
G0:0009585 red, far-red light phototransduction 0.9881 0.0795 6.00E-05 0.0051 12.42
G0:0009583 detection of light stimulus 0.9881 0.0862 9.00E-05 0.0065 11.47
GO0:0007602 phototransduction 0.9881 0.0862 9.00E-05 0.0065 11.47
GO0:0006725 cellular aromatic compound metabolic  4.5455 1.7699 0.00017 0.011 2.57
process
GO0:0009582 detection of abiotic stimulus 0.9881 0.0994 0.00018 0.011 9.94
GO0:0009581 detection of external stimulus 0.9881 0.1027 0.00022 0.013 9.62
GO:0051716 cellular response to stimulus 3.3597 1.1435 0.00024 0.013 294
G0:0042398 cellular amino acid derivative 2.7668 0.8584 0.00032 0.017 3.22
biosynthetic process
G0:0009809 lignin biosynthetic process 1.1858 0.1823 0.00046 0.022 6.50
G0:0009808 lignin metabolic process 1.1858 0.1823 0.00046 0.022 6.50
GO:0006575 cellular amino acid derivative 3.3597 1.2495 0.00064 0.028 2.69
metabolic process
G0:0009628 response to abiotic stimulus 4.7431 2.0815 0.00067 0.028 2.28
G0:0009791 post-embryonic development 2.5692 0.8352 0.00078 0.03 3.08
G0:0009416 response to light stimulus 2.5692 0.8319 0.00075 0.03 3.09
G0:0051606 detection of stimulus 0.9881 0.1359 0.00082 0.031 7.27
G0:0015979 photosynthesis 1.7787 0.4574 0.00096 0.034 3.89
G0:0009314 response to radiation 2.5692 0.8651 0.0011 0.037 297
G0:0009805 coumarin biosynthetic process 0.9881 0.1525 0.0014 0.045 6.48
G0:0009804 coumarin metabolic process 0.9881 0.1525 0.0014 0.045 6.48
BG, background; Ref, reference; FDR, false discovery rate.
doi:10.1371/journal.pone.0046930.t001

manipulations by various means, such as defruiting, GA treatment
and fall girdling, are highly effective on generative inflorescences,
their effect on mixed-type shoots is not always significant
[3,5,15,16,51-53].

In general, bud morphology and anatomy did not change
significantly from May to January. This is in agreement with Lord
and Eckerd’s [31] original finding of microscopic bud break only
being detectable in as late as the end of December, and
macroscopic bud break being detectable about 2 weeks after that.
However, in May, soon after flowering and fruit set, OFF buds
were already significantly longer than ON buds. In Pixie
mandarin, fruit has been shown to inhibit vegetative shoot
development by reducing both their number and the number of
nodes which can bear floral and vegetative shoots the following
spring [5]. A reduction in the number of nodes during the ON
year might well explain the difference in bud length between ON
and OFF trees.
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Expression of flowering control genes in ON and OFF
buds

To date, the expression of flowering control genes has been
mostly investigated in leaves and stems. To the best of our
knowledge, this work provides the only report describing the
expression of flowering control genes in citrus buds. We recently
demonstrated that during the flowering induction period, the
mRNA levels of FT were considerably higher in buds than in
leaves (Goldberg-Moeller R, Shalom L, Shlizerman L, Samuels S,
Zur N, Ophir R, Blumwald E, Sadka A, Submitted). The mRNA
levels of FT2, as well as of API and LFY, were higher in OFF buds
than in ON buds during the flowering induction period, similar to
that which has been described for F7T and API in Moncada
mandarin ON and OFF leaves [40]. Similarly, the expression of
FT, AP] and LFY in mango was induced in leaves during the
flowering induction period, with OFF trees showing higher levels
of expression of /T and API [54]. Therefore, these results suggest
that F72, LFY and API might be involved in the annual phase
transition in citrus. As the number of studied cases is so far too
small, it is still difficult to generalize this picture to other perennial
fruit trees [55]. Morecover, in apple, a deciduous tree, the
expression of AP/ and two FT genes was usually higher on fruit-
bearing shoots than in succulent shoots [56]. The expression
patterns of CiFT1 and CiFT3 provide similar picture to the two
apple genes and a different one to CiFT2: first, ON buds displayed
higher levels of their transcripts, and second, their induction did
not occur during the flowering induction period, as with the other
genes. In poplar, one of the /7 paralogs’ involvement in vegetative
growth has recently been demonstrated [57]. It is therefore
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Table 2. Gene ontology (GO) categorization of genes induced in ON buds.
GO term Description % in input list % in BG/Ref p-value FDR Fold enrichment
G0:0010252 auxin homeostasis 0.9804 0.0331 6.10E-07 0.0005 29.58
GO0:0006073 cellular glucan metabolic process 3.1373 0.7292 7.80E-06 0.0011 430
G0:0009312 oligosaccharide biosynthetic 1.1765 0.0829 6.50E-06 0.0011 14.20
process
G0:0044042 glucan metabolic process 3.1373 0.7292 7.80E-06 0.0011 4.30
G0:0005992 trehalose biosynthetic process 0.9804 0.0464 4.50E-06 0.0011 21.13
G0:0046351 disaccharide biosynthetic process 1.1765 0.0762 3.80E-06 0.0011 15.43
G0:0044264 cellular polysaccharide metabolic 3.1373 0.7524 1.20E-05 0.0014 4.17
process
G0:0005976 polysaccharide metabolic process 3.5294 0.9380 1.40E-05 0.0014 3.76
G0:0005991 trehalose metabolic process 0.9804 0.0597 1.80E-05 0.0017 16.43
G0:0005984 disaccharide metabolic process 2.5490 0.5966 5.60E-05 0.0046 4.27
G0:0009311 oligosaccharide metabolic process 2.5490 0.6099 7.00E-05 0.0053 4.18
G0:0042221 response to chemical stimulus 6.8627 2.9598 0.00011 0.0079 2.32
G0:0016137 glycoside metabolic process 2.5490 0.6529 0.00014 0.0088 3.90
G0:0005985 sucrose metabolic process 2.3529 0.5734 0.00015 0.0091 4.10
G0:0005982 starch metabolic process 2.3529 0.6032 0.00025 0.014 3.90
G0:0044262 cellular carbohydrate metabolic 43137 1.6075 0.00027 0.014 2.68
process
G0:0016138 glycoside biosynthetic process 1.1765 0.1624 0.00035 0.017 7.24
GO0:0010035 response to inorganic substance 1.5686 0.3281 0.00068 0.031 4.78
G0:0010038 response to metal ion 1.3725 0.2585 0.00078 0.034 531
G0:0009733 response to auxin stimulus 1.9608 0.5204 0.001 0.042 3.77
BG, background; Ref, reference; FDR, false discovery rate.
doi:10.1371/journal.pone.0046930.t002

possible that CiFT1 and (iFT3 are involved in the control of
vegetative rather than reproductive growth. There are three
vegetative flushes in citrus: spring flush (February—March),
summer flush (June-July) and fall flush (October-November).
However, ON trees display suppressed vegetative growth.
Therefore, we suggest that CiFT] and CiFT3 cither play a role
in the suppression of vegetative flush development, or help
determine ON bud fate toward vegetative growth the following
spring. If the latter is indeed the case, the early induction of CiFT1
and CiFT3 should generate a signal that persists for a long time. If
such a signal is indeed generated, then it should also be considered
to be reversible, as the defruiting of ON trees induces flowering the
following spring. Obviously, expression patterns provide only
coincidental evidence for the involvement of the above genes in
phase transitions. More direct evidence, such as that provided to
establish the involvement of F7, LF) and API in the juvenile-to-
adult phase transition, is required. However, one reasonable
scenario (among others) is that CiFT2, API and LFY are induced in
OFF buds and leaves in response to flowering-permissive
environmental and endogenous signals. In ON organs, high fruit
load prevents or reduces their induction by generating a ‘negative
AB signal’. The nature of the endogenous signal affected by fruit
load, be it nutritional status of the tree, hormonal or some other
signal(s), is currently unknown. However, while considering the
various possibilities, the following points should be borne in mind:
(1) like in Arabidopsts, it is reasonable to assume that more than one
flowering control pathway exists in citrus [58,59], and therefore
the effect of fruit load might be exerted on more than one
pathway; (2) fruit load might also act via some exogenous signal,
such as low temperature. As already noted, flowering in citrus is
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Figure 6. Expression of SPL-like and miR756 in ON and OFF buds. Fold change (FC) between OFF and ON buds and leaves+stems (LS) of
microarray probe Cit corresponding to SPL-like (A) in the indicated months. mRNA of SPL-like (B) and miR156 (C) was analyzed in ON and OFF buds
during the indicated months. Mean number of three biological replicates + SE. Stars denote a significant difference between the expression of the

gene in ON and OFF buds during the same time point (P<<0.05).
doi:10.1371/journal.pone.0046930.g006

induced by low temperature, while day length has a relatively
minor effect [30]; under permissive temperatures, shortening day
length might induce more flowers, but has no effect under non-
permissive temperatures. In Arabidopsis, the vernalization-flowering
promotion pathway is dependent on the removal of FLOWERING
LOCUS C (FLC) inhibition of FT expression in the leaves, and on
the expression of FD and SOCI in the apical meristem [60].
However, to the best of our knowledge, FLC-like genes have not
yet been described in plants other than crucifers, questioning the
validity of the Arabidopsis mechanism in fruit trees. Moreover,
although SOCT was induced during the flowering induction period
(at least from September to December), no difference was detected
between ON and OFF buds, in contrast to the case in leaves; (3)
although day length has only a minor effect on flowering induction
in citrus, day-length shortening, rather than temperature drop,
might explain the 6-fold induction in F7 expression from May to
September in the OFF buds; (4) expression patterns are not always
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easily interpreted. For example, AP/ expression was higher in ON
than OFT buds in May, whereas that of LF} and SOCI was higher
in OFF than ON buds. It might be that these genes have other
functions at this stage.

One of the outcomes of the genomic analysis, validated by real-
time PCR, was the induction in OFF buds and LS of the SPL-like
gene (Figure 6). SPLs play a role in the juvenile-to-adult and
annual phase transitions and are regulated by miR156 [50].
Indeed, the importance of mi:R156 in the juvenile-to-adult phase
transition has been recently demonstrated in some trees [61]. In
Arabidopsis, SPLs provide a gene family of 16 members, 10 of them
regulated by miR156 [62]. The citrus SPL-like seems to be a close
relative of the small SPL genes, SPL3/4/5, based on three criteria:
first, like SPL3/4/5, its miR156-binding site is located within the
3'UTR and not within the coding region as in other SPL family
members (Shalom L, Shlizerman L, Blumwald E, Tumimbang E,
Sadka A, in preparation); second, the putative SBP domain of
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Figure 7. Expression of trehalose metabolism genes in ON and
OFF buds. mRNA levels of trehalose phosphate phosphatase (TPP) and
trehalose phosphate synthase (TPS) were measured in ON and OFF
buds in May. Fold change (FC) between ON and OFF buds in their
corresponding microarray probes are shown in the lower panel. Mean
number of three biological replicates = SE. Stars denote a significant
difference in the expression of the gene between ON and OFF buds
(P<0.05).

doi:10.1371/journal.pone.0046930.g007

citrus SPL-like shows highest homology to those of the Arabidopsis
SPL3/4/5; third, similar to SPL3/4/5, its expected product is
relatively small (130 amino acids). This gene’s overall expression
pattern in the buds suggests that it is negatively regulated by fruit
load, and therefore might play a role in flowering induction
following an OFF year. Functional analysis of the citrus gene in
Arabidopsis showed that its overexpression induces early flowering,

6000 800 -
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and that it possesses an active miRI56-binding site (Shalom L,
Shlizerman L, Blumwald E, Tumimbang E, Sadka A, in
preparation). In Arabidopsis, SPLs act in both the leaf and the
apical meristem to promote flowering in a complex manner
involving several pathways [50]. In one of them, operated in the
apical meristem, SPL3 and SPL9 bind to the promoter regions of
flower meristem identity genes, inducing their expression. In this
way, SPL promotes the expression of FUL and LFY, SPL9
promotes the expression of SOCI and AGL42, and both SPL3 and
SPL9 promote the expression of API, in concert with the FT/FD
complex [63]. The overall expression pattern of SPL-like in OFF
buds compared to ON buds suggests that the gene responds to
fruit load; the highest difference in mRINA levels, about 4-fold, was
detected in May. This provides further support for the hypothesis
that ‘AB signal’ is generated early in the season, at least 6 months
prior to the flowering induction period. However, considering the
action of SPLs in flowering induction, the overall reduction in this
gene’s mRNA levels is somewhat surprising. In fact, its mRNA
levels are minimal during the flowering induction period, from
November to January, when genes downstream of SPL—LFY]
SOC1, FT2 and AP]—are induced. It might be that SPL itself is
regulated at the post-transcriptional level. Although less likely, it
might be that in contrast to Arabidopsis, SPL does not act directly
on the expression of flowering control genes, but generates a signal
which acts during the flowering induction period. In any case, as
already discussed, these results further emphasize the complexity
in interpreting expression patterns. Further complexity stems from
the pattern of expression of miR156: miR256 was induced from
September to January, in accordance with the reduction in SPL
expression. However, its levels were slightly reduced from May to
September, when SPL mRNA levels were also reduced. Moreover,
no difference in its levels was detected between ON and OFF
buds. These results suggest that SPL might be subjected to other
modes of regulation, an option that is currently being investigated
in our laboratory.
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Figure 8. Expression of flavonoid biosynthetic pathway genes in ON and OFF buds. The mRNA levels of phenylalanine ammonia-lyase
(PAL), chalcone synthase (CHS), cinnamate 4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL), chalcone isomerase (CHI), flavanone 3-
hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), isoflavone reductase (IFR), flavonol synthase (FLS), Anthocyanidin synthase (AS) and UDP-
glucose:flavonoid-3-O-glucosyltransferase (UF3GT) were measured in ON and OFF buds in May. Fold change (FC) between ON and OFF buds in their
corresponding microarray probes are shown in the lower panel. Mean number of three biological replicates = SE. Stars denote a significant difference

in the expression of the gene between ON and OFF buds (P<<0.05).
doi:10.1371/journal.pone.0046930.g008
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Figure 9. Flavonoid content in ON and OFF buds. The indicated flavonoids were measured in ON and OFF buds using LC-MS. Y axis indicates
the intensity of each compound, RU relative units. Mean number of three biological replicates *+ SE. Stars denote a significant difference between ON

and OFF buds (P<0.05).
doi:10.1371/journal.pone.0046930.g009

Differentially expressed pathways in ON and OFF trees

The clustering analysis demonstrated that the impact of the
three tested conditions, time, tissue type and AB state, on the level
of similarity between the expression profiles follows the order: AB
state>>tissue type>>time, i.e., ON and OFF organs showed more
similar patterns than under the effect of time or tissue type
(Figure 4A). This means that developmental changes over time
within the same organ resulted in greater changes in gene
expression than ON and OFF states of the organ at the same time
point. However, it should also be noted that buds and LS showed
more similar patterns at the same time point than buds or LS at
different times. A similar gene expression pattern suggests that
buds and LS share common functions, which is not surprising
considering the fact that the bud contains leaf primordia.

Among the three analyzed time points, the largest number of
DEPs between ON and OFT trees was detected in May, while in
September and between November and January, their number
was relatively low. Moreover, in May, the number of DEPs was
much higher in buds than in LS. Taken together with the finding
that the maximal difference in bud width develops between May
and July, these results suggest that AB signal, if present, is
generated much earlier than the flowering induction period, and
causes the above changes. Alternatively, changes in gene
expression in May might reflect changes in resource allocation:
when fruit is present (ON trees), buds are deprived of photo-
assimilates, which directly reduces their size in comparison to the
case in OFT trees.

Biological processes affected by fruit load in May buds
As already noted, the highest number of DEPs was evident

during May in the buds. Obviously, we cannot cover all of the

metabolic processes which are induced at this time point, and we
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therefore briefly discuss three of these processes: two of them,
flavonoid biosynthesis and photosynthesis, are induced in OFF
buds, and one, trehalose metabolism, is induced in ON buds. The
expression of genes belonging to two of these processes, flavonoid
biosynthesis and trehalose metabolism, were also validated by
nCounter technology.

Trehalose metabolism. ON buds showed increased expres-
sion of the two genes of trehalose metabolism, 7PS and 7TPP.
Trehalose is a disaccharide, which serves as an alternative sugar to
sucrose in a variety of bacterial and fungal species [64]. In
resurrection plants, where it serves as an osmoprotectant, trehalose
is present at high levels, but usually in higher plants it is below
detection levels. Changes in the trehalose biosynthetic genes and/or
enzymes, and not necessarily trehalose levels themselves, were
postulated to play a signaling or regulatory role in stress-response
pathways [65]. Moreover, Arabidopsis plants mutated in 7PS show
arrested-growth phenotypes, remaining in the vegetative growth
phases, suggesting that the gene is required for proper embryo
development [66]. These results demonstrate the importance of the
trehalose biosynthetic pathway for normal vegetative growth and
transition to the flowering phase. An increase in the expression of
TPS and TPP along with unchanged expression in trehalase, which
catabolizes trehalose, suggests that trehalose level and/or pathway is
induced in ON buds in May. These results can be explained in two
ways. First, as a result of the high investment in developing fruits,
ON trees are commonly under stress [7], which might directly affect
the bud. Increased production of trehalose might play a role in
mitigating the effects of these stresses. Second, the significant
differences in TPS and TPP expression in buds, but not in LS, in
May suggest a possible role for trehalose and/or its biosynthetic
pathway in citrus flowering induction and in the regulation of AB
itself, via an unknown mechanism.
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Photosynthesis. Genes belonging to the three components of
photosynthesis—light reactions, Calvin cycle and photorespira-
tion—are induced in OFF buds (Figure S3, Table S6). In addition,
SEA of expression showed that processes involved in the detection
of light stimulus (including red/far red light) and phototransduction
are also induced in OFF buds (Table 1). Bud morphology does not
allow efficient photosynthesis and like the fruit, it provides a sink
organ for photoassimilates. Moreover, while in ON trees, the bud
competes with the developing fruit for resources, no such
competition occurs in OFF trees, loaded with photoassimilates
and storage molecules. In fact, according to nutritional theory,
photoassimilate availability might well play a regulatory role in
flowering induction. However, one could question the reason for
inducing the photosynthetic machinery within the bud in an OFF
year. We hypothesize that this induction provides a signal for the
nutritional status of the bud. In other words, the bud signals its
surrounding source leaves that it is loaded with photoassimilates, so
the translocation rate is reduced. Although at this stage we cannot
provide direct evidence for this hypothesis, it has been suggested
that specific tissues within tomato fruit signal their sink strength by
altering their photosynthetic machinery; indeed, different tissues
possess different photoassimilate-translocation rates.

Flavonoid biosynthesis. Genes of a few pathways of
secondary metabolism were induced in OFF buds, including
flavonoids, phenylpropanoids, alkaloids and lignin (Table 1,
Figure 5, Figure S6). Induction of five flavonoid biosynthesis genes
was validated by nCounter technology, and metabolomic analysis
confirmed that the pathway might indeed be induced in OFF buds
in May (Figure 9, Figure S6). The induction of specific flavonoids
was relatively marginal; however, the identification was limited by
the standards used, and other flavonoids might also be induced. In
any case, it seems that not only the central pathway was induced,
but also the side reactions. Flavonoids are secondary metabolites
that influence a variety of characteristics, such as aroma and flavor
pigmentation, as well as protection against UV radiation [67]. Their
synthesis has been hypothesized to occur under conditions of excess
photoassimilates, particularly sucrose [68]; sucrose feeding of
Arabidopsis plants has been shown to result in increased expression
of flavonoid biosynthetic genes, especially those encoding anthocy-
anin [69]. In light of these findings, it is suggested that flavonoids in
the bud serve as “sink” molecules for excess photoassimilates and
other carbon molecules accumulating in the tree in OFF years.

In summary, results of this work show that a relatively long time
before the flowering induction period, fruit load affects many
regulatory and metabolic processes in the bud. Obviously, it
should be considered that this and other conclusions of the work
are based on a single cropping year. Although the expression of
some of the flowering control genes was partially investigated
during another year, with similar results (data not shown), year to
year environmental and other external variations might affect the
results, and therefore the conclusions. It should also be mentioned
that the nature of the AB signal, and whether it is produced that
early, remain open questions. Even if produced in May, or earlier,
the signal must be reversible, as fruit thinning or complete removal
from ON trees reverses the AB state. Ongoing studies in our
laboratory include analyses of buds following fruit removal in
September, when the number of differentially expressed genes
between ON and OFF buds was very low. These analyses are
expected to clarify which of the processes induced in ON and OFF
buds are directly affected by fruit load. We are also investigating
the possibility of SPL-like playing a role in AB signaling. In light of
suggestions in the literature, the trehalose metabolism is involved
in vegetative and reproductive growth, and the possible involve-
ment of this metabolism in AB control warrants further study.
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Supporting Information

Figure S1 The annual cycle in citrus. Stage I and Stage II of
fruit development are as described previously [41].

(TIF)

Figure 82 ON and OFF shoots in citrus. Schematic
description of OFF-year fruitless shoot and ON-year fruit bearing
shoot. Buds are represented as brown triangle. Bud collection from
OFF shoot was performed as described under Material and
Methods. All buds of ON shoot were collected for the analyses.
(TTF)

Figure S3 Induction of photosynthesis in OFF buds.
Differentially expressed probes were analyzed by MapMan. Blue
squares represent genes induced in ON buds and red squares
represent genes induced in OFF buds. A description of the specific
genes and their fold change is provided in Table S6.

(TIF)

Figure S4 Expression of trehalose metabolism genes in
ON and OFF buds. mRNA levels (RE) of trehalose phosphate
phosphatase (TPP) and trehalose phosphate synthase (TPS) were
measured in ON and OFF buds during the indicated months.
(TTF)

Figure S5 Expression of flavonoid biosynthetic pathway
genes in ON and OFF buds. mRNA levels of phenylalanine
ammonia-lyase (PAL), chalcone synthase (CHS), cinnamate 4-
hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4#CL), chal-
cone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydro-
flavonol 4-reductase (DFR), isoflavone reductase (/FR), flavonol
synthase (FLS), Anthocyanidin synthase (4S) and UDP-glucose:-
flavonoid-3-O-glucosyltransferase (UF3GT) were measured in ON
and OFF buds during the indicated months.

(TIF)

Figure S6 Induction of flavonoid pathway in OFF buds.
A scheme showing the biosynthetic pathway of flavonoids. Genes
induced in OFF buds in the microarray or in the real-time PCR
are marked with squares. Standards for specific flavonoid groups
are also marked.

(TIF)

Table S1 Primers list.

(XLSX)

Table S2 List of genes (http://www.phytozome.net/)
used for nCounter analysis.

(XLSX)
Table S3 Microarrays hybridization results by log
signal.
(XLSX)

Table S$4 GO annotations for differentially expressed
probes in May buds.

(XLSX)

Table S5 Probe list of Fig. 5.
(XLSX)

Table S6 Probe list of Fig. S3.
(XLSX)
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